透過您的圖書館登入
IP:3.15.202.214
  • 學位論文

中孔性二氧化鈦薄膜之製備及其在 太陽能電池的應用

Preparation of mesoporous TiO2 films for hybrid solar cells

指導教授 : 王立義 鄭俊麟

摘要


本研究中,我們利用Pluronic P123 copolymer為模板並分別使用四乙氧基鈦、四異丙氧基鈦、四丁氧基鈦為三種不同的TiO2前驅物。實驗上,首先將以TiO2 precursor, HCl, Pluronic P123及EtOH以不同的比例混合成為塗佈溶液,再應用拉升塗佈法來製備TiO2/Pluronic複合薄膜,然後將此薄膜靜置於25 °C與55 %濕度的環境下,讓分子自組裝成為柱狀結構,最後在450 °C高溫鍛燒除去P123,生成中孔性TiO2膜。由FE-SEM量測結果顯示,以四乙氧基鈦或四丁氧基鈦可製備出排列整齊之中孔性二氧化鈦薄膜,其孔洞大小分別量測為8~10 nm和10~14 nm;改變溶液組成之濃度對中孔性二氧化鈦之孔洞結構不會產生明顯的變化,但卻可將厚度控制至40~300 nm範圍間,此外,隨著P123添加量的增加,孔洞會扭曲變形進而產生破裂;當P123含量減少,孔洞結構之緻密性會愈來愈高。利用四異丙氧基鈦製備之中孔性TiO2薄膜,其表面形態呈現出類指紋之孔洞結構。最後由XRD鑑定結果得知,中孔性TiO2薄膜為anatase晶相。 我們挑選已製備完成的中孔性TiO2薄膜應用於高分子太陽能電池,將poly(3-hexylthiophene)(P3HT)以旋轉塗佈的方式塗佈於基材,控制熱處理的時間使P3HT滲入至孔洞,實驗結果發現,小分子量之P3HT的光電轉換效率優於高分子量。另外,我們亦在TiO2的表面上吸附一層介面改質劑以改善TiO2與P3HT的相容性,由接觸角與表面功函數的鑑定結果,它有效修飾介面極性的差異。以四乙氧基鈦所製備出的中孔性二氧化鈦薄膜之元件,當熱處理時間增加,其光電轉換效率會隨之增加,當經熱處理七分鐘後,其光電轉換效率可達到1.64 %。以四丁氧基鈦所製備出之中孔性二氧化鈦薄膜太陽能元件,會隨著熱處理時間的增加,其光電轉換效率隨之降低,未經熱處理的情況下,光電轉換效率則可達到1.88 %。利用四異丙氧基鈦所製備的中孔性二氧化鈦薄膜之太陽能元件,其光電轉換效率僅可達0.56 %。最後由UV吸收和螢光圖譜發現,熱處理會破壞介面改質劑與TiO2間的鍵結,因此,我們嘗試利用四乙氧基鈦所製備中孔性二氧化鈦薄膜之太陽能元件以溶劑慢乾法取代熱處理法,其實驗結果顯示,可有效提升開路電壓與填充因子,光電轉換效率可達1.77 %。

並列摘要


A series of mesoporous titania thin films on top of FTO/dense TiO2 was prepared by dip-coating the substrate from a solution of TiO2 Precursor/HCl/Pluronic P123/EtOH, followed by keeping them at 25 °C for 24 hours and then calcinations at 450 °C to burn out organic template and promote the formation of TiO2 crystallites. Furthermore, changing the ratio of TiO2 Precursor to Pluronic P123 and varying the solvent amount for different concentration to study the alternation of porosity and thickness in mesoporous TiO2 thin films by using FE-SEM. The pore size of mesoporous TiO2 observed by FE-SEM are 8~10 nm and 10~14 nm, which were prepared respectively by titanium ethoxide and titanium butoxide. No significant influence on mesoporous TiO2 pore size by the different concentration of solution, but the thickness of mesoporous TiO2 varies in a range of 40 to 300 nm. As a result of XRD, we sussucuflly fabricate mesoporous TiO2 film with about anatase phase. In our study, we fabricated P3HT on top of FTO/dense TiO2/ mesoporous TiO2/surface modifier/P3HT/Au by using heat treatment under time control after spin coating. Moreover, we introduced an interface modifier on TiO2 surface to improve the compatibility between P3HT organic materials and TiO2 inorganic materials. Based on the surface characterization results by contact angle and AC-2, the modified TiO2 surface has been transformed into hydrophobic and the surface work function also resulted in shifting due to the existence of interface modifier. The optimized performance fabricated by titanium ethoxide with seven minutes heat treatment exhibit 1.64 % of power efficiency, while the performance of TiO2 processed from titanium butoxide show the highest efficiency 1.88 % without heat treatment, but decreasing in efficiency with increasing heat treating duration. The device performance of mesoporous TiO2 using titanium isopropoxide only reached 0.56 % after heat treatment. Based on the evidence of UV absorption spectra and PL spectra, heat treatment destroyed the binding between TiO2 and interface modifier. Thus, we utilized titanium ethoxide to fabricate mesoporous TiO2 with solvent treatment. Our experiment results exhibit a power conversion efficiency of 1.77 % and the improvement in open circuit voltage and fill factor.

並列關鍵字

device solar cell mesoporous TiO2

參考文獻


[3] F. C. Krebs, Solar Energy Materials & Solar Cells, 2009, 93, 422.
[6] K. Tanabe, Energies, 2009, 2, 504.
[7] G. Crabtree and N. S. Lewis, Phys. Today., 2007, 3, 37.
[11] M. Reyes-Reyes, K. Kim and D. L. Carroll, Appl. Phys. Lett., 2005, 87, 083506.
[14] M. Gratzel, Inorg. Chem., 2005, 44, 6841.

延伸閱讀