摘 要 本論文主要討論集值級數的收斂性質,一開始我們先介紹何謂Banach空間及一個眾所周知的性質;即: Banach空間裡絕對收斂的級數必收斂。本論文的主要結果就是將此性質推廣到集值級數。 我們在度量空間中引入Kuratowski的集值序列收斂概念,並以此收斂概念 證明我們的主要結論:在Banach空間中,一個由緊緻集所形成的集值級數若絕 對收斂則必收斂。
Abstract The aim of the thesis is to discuss the convergece of series of sets in a Banach space. First, we start by introducing Banach space and some of its basic properties. Next, we define the Kuratowski’s convergence for sequences of sets in a metric space. Then, by taking use of the Kuratowski’s convergence, we prove that the absolute convergence of a series of compact sets in a Banach space implies the convergence of this series.