透過您的圖書館登入
IP:3.12.107.29
  • 學位論文

建構以綠色化學概念之普通化學相關實驗

Designing Selected Green General Chemistry Experiments

指導教授 : 葉華光

摘要


現今因環保意識、綠色推廣、永續發展的概念興起,「綠色化學」以成為一個重要的議題,綠色化學指的是利用化學技術設計較安全的化學品或是化學反應過程來取代危險物質的使用,或是盡可能減少與消除這些危險物質和廢棄物對環境的衝擊。 本研究目的在於利用及推廣綠色化學,來創造全新的綠色普通化學實驗,並且能讓將來的學徒更充分的了解到綠色化學實驗的操作方法和精神。 而在本文中依序討論到再生能源「生質柴油」、回鍋油之光「脂肪酸蠟燭」、天然又環保「蛋殼粉筆」、還原印刷電路板廢液中的「銅」等綠色普通化學實驗,並描述和討論其實驗結果。 隨著近幾年經濟的蓬勃發展,在能源上的消耗量極為龐大,而生質柴油是在這之中快速的興起成為全球最熱門的產業之一。生質柴油的原料來自於油脂,主要是將動植物油脂或廢食用油中較大分子的飽和或不飽和脂肪酸類轉化成較小分子的脂肪酸酯。在本文中結合了酸催化和鹼催化轉酯化法,快速的轉化廢棄油並使轉酯率提高,產率為83%。 在國內廢食用油的數量龐大,回收後形成的經濟價值極高,本文利用廢食用油製作蠟燭,提高其商業價值並能減少環境污染。蠟通常是指長鏈脂肪酸,利用三酸甘油脂與氫氧化鈉進行皂化反應形成脂肪酸鈉鹽,在使其與強酸作用得到不溶性的脂肪酸,產率約為10%。 粉筆是現今教學現場不可或缺的消耗品,其主要成分為硫酸鈣,硫酸鈣經由呼吸道吸收至人體,易產生氣喘、過敏、皮膚病等疾病。蛋殼中含有97%的碳酸鈣,丟棄後焚燒會產生大量溫室氣體CO2,因此利用廢棄蛋殼來製作粉筆不僅能減少溫室效應還能降低人體危害一舉兩得。本文中利用蛋殼粉和無水硫酸鈣、麵粉、太白粉以1:2的比例來製作粉筆,並討論其合適度與使用程度。 近幾年來國內半導體產業發展迅速,相對其印刷電路板(PCB)製造業亦快速成長,PCB製程中使用多種化學藥劑,並在蝕刻的步驟中利用氯化鐵蝕刻液將銅蝕去,因而產生大量高濃度的含銅廢水。氯化鐵對銅的蝕刻是一個氧化還原過程,利用Fe3+使銅氧化形成氯化銅廢液,為了降低重金屬污染在廢液中加入鐵粉反應,形成氯化亞鐵液體並使Cu2+還原為固體,本次實驗中析出的銅重量為0.7mg。

並列摘要


Since the development of the concept of eco-awareness and the sustainable development, the Green Chemistry has been an important issue for a while. The Green Chemistry means to use chemistry technology to design the safer chemistry agent or to replace the hazard substance used in chemical reaction or to reduce the impact of the hazard substance and the rejection to environment as far as possible. This research goal is to employ and to popularize Green Chemistry to create a new Green General Chemistry Experiment, and to make students fully understand the operation of the experiment and the gist of the Green Chemistry in the future. Next, this text will describe and discuss the result of Green General Experiments of the Bio-Diesel, the Candle made from fatty acid, the Egg shell chalk, and the element, Cu, which is reduced from the chemistry waste liquid of PCB (printed circuit board). By the rapid development of economy, the energy consumption is extremely enormous, and the Bio-Diesel, which is the most popular industrial over world, is rising rapidly in that moment. The source of the Bio-diesel is come from oil, mostly invert from saturation or unsaturated fatty acid of macromolecule of animal fats and vegetable oil or waste oil. In this text combine acid and base catalyzed esterification, rapidly invert waste oil and promote the possibility of esterification, and the yield is 83%. The sum of the waste oil is enormous in our country, so the economy value of the reclaim is infinite too, we use waste oil to make candle, promotes its economy value and reduce the pollution in the same time. Beeswax often links to Long-chain fatty acid, using Triglyceride and NaOH for saponification to form fatty acid, sodium salts, then make it and strong acid to reaction, getting insoluble fatty acid, the yield is 10%. Chalk, made from CaSO4, is indispensable consumption in teaching, people will absorb CaSo4 when they breath, it may cause asthma, allergy and skin disease and so on, Egg shell contain 97% Caco3, after burning will release a great number of CO2, which is the principal constituent of Greenhouse gas, so we use waste egg shell to make chalk, it not only reduce the Greenhouse gas, and also lower the damage to human body. This text use egg shell, CaSO4, flour and potato flour to make chalk, and discuss about its compatibility and practicality. Recently, semiconductor industry develops quickly, and the manufacturer of PCB is rapidly growing up too. Process of making PCB using kinds of chemical agent, and in the steps of etching, using FeCl3 to etch Cu, it will produce high potency waste liquid which is contain Cu. FeCl3 etch Cu is an oxidation reduction process, using Fe3+ oxidize Cu to form CuCl2 in waste liquid, we add iron power to reaction to lower the heavy metal pollution in the waste liquid, forming FeCl2 liquid and make Cu2+ reduction to solid, the weight of Cu in the experiment is 0.7mg.

參考文獻


7. 李吉祥、楊致行,綠色化學:生態材料開發與應用,工研院能源與環境研究所,專題報導,2007年11月,Vol. 65, No. 4,pp. 397-408
9. 陳怡真,實驗設計法進行棕櫚油轉酯化生質柴油之因子設計分析及最佳化,中原大學,碩士論文,2005,6月
2. Keith, L. H.; Gron, L. U.; Young, J. L., Green analytical methodologies. Chemical Reviews 2007,107, (6), 2695-2708.
3. Anastas, P. T., Green chemistry and the role of analytical methodology development. Critical Reviews in Analytical Chemistry 1999, 29, (3), 167-175.
8. Biodiesel magazine, U. S. A, February, March, April & May, 2006

延伸閱讀