透過您的圖書館登入
IP:3.135.183.1
  • 學位論文

合成SiO2-Fe3O4中空多孔奈米粒子及其在藥物釋放之應用

Formation of SiO2-Fe3O4 mesoporous nanoparticles for drug delivery

指導教授 : 王宏文

摘要


本研究主要分成四大部分,首先以共沉澱法將含有FeCl3.6H2O 與FeCl2.4H2O 的前驅鹽溶液加入鹼液來共沉澱製備Fe3O4粒子。由實驗結果發現,以高速均質所合成的Fe3O4 其平均粒徑約為10nm,除此之外,以此種高速均質方式所製備之Fe3O4奈米粒子在無須添加其他界面活性劑的情況下,可得到較一般水熱法或是共沉澱法較佳的分散性質。磁性質分析方面, 透過SQUID 分析,高速均質方式所合成的Fe3O4可得到約90 emu/g 的飽合磁化值。 第二部分則是Stöber process[31]合成SiO2奈米顆粒及Mesoporous SiO2 nanoparticle。並藉由改變界面活性劑的添加比例來調控SiO2 nanoparticle中的孔洞性質,使其能夠藉此得到較大的比表面積及藥物攜帶量並;進行粒徑分佈、表面型態、熱性質等性質探討。從TEM 影像觀察到SiO2 nanoparticle的粒徑約100~300 nm;添加陽離子界面活性劑—溴化十六烷基三甲基銨(CTAB),可促使SiO2 nanoparticles 形成多孔型態,TEM影像分析結果顯示孔洞呈六角堆積排列方式。 第三部份則將上述兩部分研究結合,在磁性奈米顆粒外包覆SiO2及Mesoporous SiO2的殼層。另外,利用200nm孔洞大小的PC膜做為模板製作SiO2 奈米管,利用相同材質不同型態之材料,增加樣本表面積及藥物攜帶量;由SEM影像可以觀察到奈米管管長約為10μm,管徑約200nm~300nm之間; SiO2的組成則藉由EDS分析確認。 最後一部分則是將磁性矽膠顆粒進行藥物釋放的測試。透過膨潤法將藥物裝載入奈米粒子及奈米管中,在PH=7的仿生液及室溫下進行藥物釋放測試,利用UV光譜儀對不同時間點之釋放樣本做吸收光譜分析。結果發現,無論是具有磁性奈米粒子或未具有磁性之奈米粒子皆有效的釋放藥物,含孔洞材料的攜藥性都高於未含孔洞之材料,其釋放時間也較長。本研究結合磁性奈米粒子及矽膠的多孔性性質等兩種材料的特性,開發新一代藥物治療之載體技術,期待能減少現有MRI藥物載體的負作用,同時改善添加藥物釋放的效果。

並列摘要


This study is divided into four parts. In the first part, the precursors FeCl3.6H2O and FeCl2.4H2O were dissolved in water and then alkali was added to synthesis magnetite nanoparticles by co-precipitation method and high rotation speed. The distribution of particle size, surface potential, morphology, lattice structure and magnetic properties of these particles were analyzed and compared with those of commercial magnetite. From the results, the particle size of magnetite, synthesized by using homogenizer, was about 10 nm. The magnetization is 90 emu/g, as high as the commercial one, from the SQUID analysis. We have successfully used homogenizer co-precipitation method to synthesis magnetite nanoparticlese without any surfacten. The distribution of particle size, surface potential, morphology and magnetization are all better then those of particles synthesized by hydrothermal method. At the second part, we used Stöber process to synthesis the SiO2 nanoparticles and mesoporous SiO2 nanoparticles, and control the ratio of additives to make the SiO2 nanoparticles into mesopourous state to get high surface area and more ability to carry drugs. Results of TEM analysis indicated that SiO2 nanoparticles size was about 100-300 nm. On the other hand, adding Cationic surfactants--- Hexadecyltrimethylammonium(CTAB) could make SiO2 nanoparticles have mesoporous, which was approved by TEM analysis. By combining the above two parts, we prepared the magnetic nanoparticle coated mesoporous SiO2 shell. We also used 200 nm PC membrane to synthesis SiO2 nanotubes. Same material but different state was used to increase surface area and ability of carrying drugs. Results of SEM analysis indicated that the nanottube length about 10μm and diameter is 200~300 nm. Finally, we took all samples to test drug release ability. the swelling method was used to load the drug into nanoparticles and nanotubes. The Ultraviolet-Visible spectrometer was employed to analyzed drug releasing rate. The results of UV analysis indicated that nanoparticles with mesoporous surface carried more drug and had longer releasing time than nanoparticles without mesoporous surface. We concluded that the properties of two materials could be combined to develop a new therapy technology to reduce the side effect of drug loader and to increase the drug releasing efficiency from this study.

並列關鍵字

Drug release Mesoporous SiO2 Fe3O4 Co-precipitation method

參考文獻


[21] 李昆峰、高肇鴻、陳錚誼、趙啟民、卓慧如與林玉娟,磁性奈米粒子於生醫領域之應用,科儀新知,第153期,61頁,(2006)
[8] Cornell, R.M., Schwertmann, U., “ The Iron Oxides-Structure, Properties,Reaction, Occurrences and Uses”, 2nd edition, Completely Received and Extended Edition,WILEY-VCH.
[10] Gupta, A.K., Gupta, M.,“Synthesis and surface engineering of iron oxide nanoparticles for biomedical application”, Biomaterials, 26, 3995-4021 (2005).
[12] F.Y. Cheng, C.H. Su, Y.S. Yang, C.S. Yeh, C.Y. Tsai, C.L. Wu, M.T. Wu and D.B. Shieh,“Characterization of aqueous dispersions of Fe3O4 nanoparticles and their biomedical applications" Biomaterials 26, issue7, 729-738 (2005).
[28] Tomoyuki F., Toshimasa Y., Nakamura K., Miyawaki O., ”The sol-gel prearation and characterization of nanoporous silica membrane with controlled pore size”, Journal of Membrane Science 187, 171-180 (2001).

被引用紀錄


魏凡雅(2010)。合成一維奈米金線為生物感測器電極之研究〔碩士論文,中原大學〕。華藝線上圖書館。https://doi.org/10.6840/cycu201000881
黃嘉祥(2010)。在重複資料刪除備份中對不同檔案類型的效能評估〔碩士論文,大同大學〕。華藝線上圖書館。https://www.airitilibrary.com/Article/Detail?DocID=U0081-3001201315104953

延伸閱讀