透過您的圖書館登入
IP:3.144.94.187
  • 學位論文

聚四氟乙烯表面接枝GMA-r-PEGMA高分子應用於傷口癒合

Surface grafting of GMA-r-PEGMA copolymer onto PTFE membranes for improved wound healing

指導教授 : 費安東 張雍
若您是本文的作者,可授權文章由華藝線上圖書館中協助推廣。

摘要


本研究主旨使用PEGMA與GMA經由自由基聚合所合成之共聚高分子接枝於聚四氟乙烯膜材上, 使膜材表面具有抗生物沾黏性的性質進而防止血液凝結及細菌、組織沾黏並應用於傷口癒合. 藉由調整不同含量PEGMA與GMA合成共聚高分子後進行接枝於進行表面改質, 首先將聚四氟乙烯膜材經由氫氣/氮氣低壓電漿進行表面前處裡, 經前處理後膜材表面產生C-O官能基,隨後將膜材浸入高分子溶液中並放入60˚ C烘箱中反應, 由於GMA上的環氧基於加熱環境中會與膜材表面上的C-O官能基進行化學反應而接枝於表面, 使共聚高分子接枝於表面. 於接枝後進行膜材表面物理化學性質鑑定, 首先使用SEM進行表面結構鑑定以及重量差測量觀察接枝密度, 表面化學性質則使用FTIR及XPS進行鑑定. 接著進行親水性質鑑定, 其結果表示當共聚高分子中PEGMA含量高於50%時能使膜材表面擁有較低的水接觸角(<20˚ )和較高的水合能力(> 3mg/cm2). 當共聚高分子中GMA含量較高時(60%至100%)雖然接枝密度較高(1.8mg/cm2), 但親水性質差(水接觸角> 125˚). 最後進行生物相容性測試, 使用蛋白質吸附、細菌貼附、血液貼附進行鑑定, 其結果證實經改質後之膜材有效提高了抗生物沾黏性質以及改善其生物相容性, 並將具有良好生物相容性之條件的膜材應用於動物傷口模型上觀察幫助癒合之效果.

並列摘要


The present work aimed at preparing biofouling-resistant polytetrafluoroethylene (PTFE) membranes by grafting a random copolymer of glycidyl methacrylate (GMA) and poly(ethylene glycol) methacrylate (PEGMA). After synthesizing and characterizing copolymers with different GMA:PEGMA contents, we moved onto the PTFE surface modification, done in two steps. First, the surface was activated by a plasma pre-treatment in order to form functional hydroxyl groups at the surface. Then, the activated membranes were immersed in a coating solution containing the copolymer. After the grafting step, the membranes’ physicochemical properties were characterized, in particular the surface structure (using SEM), the grafting density (by weight measurements) and the surface chemistry (by FT-IR and XPS). We then looked into the surface hydrophilic properties, and results unveiled that copolymers containing at least 50% of PEGMA in the structure led to membranes with low water contact angle (20°) and high hydration capacity (> 3 mg/cm2 ), still maintaining a grafting density of about 0.25 mg/cm2. Copolymers with higher amount of GMA (from 60 to 100%) led to higher grafting density (up to 1.8 mg/cm2) but poor hydrophilic properties (water contact angle > 125°). Subsequently, biofouling and biocompatibility tests were carried out, using protein adsorption tests, bacterial adhesion tests, and blood cells attachment tests. It was confirmed that modified membranes exhibited improved biofouling resistance and improved biocompatibility. In the end, we test the modified membranes as a potential wound healing material because it presented a set of essential properties (porous, stiff, hydrophilic, antifouling) of ideal wound dressings. Results tended to confirm that applying the optimized membrane (G50P50) tended to accelerate healing of chronic wound in model rat.

參考文獻


[1] C.F. Nathan, Secretory products of macrophages, The Journal of Clinical Investigation 79 (1987) 319-326.
[2] P. Martin, Wound healing--aiming for perfect skin regeneration, American Association for the Advancement of Science 276 (1997) 75-81.
[3] G. Schultz, D. Mozingo, M. Romanelli and K. Claxton, Wound healing and time; new concepts and scientific applications, Wound Repair and Regeneration 13 (2005) 1-11.
[4] G.D. Winter, Formation of the Scab and the Rate of Epithelizaion of Superficial Wounds in the Skin of the Young Domestic Pig, NATURE 193 (1962) 293-294.
[5] S.T. Boyce, Design principles for composition and performance of cultured skin substitutes, Journal of the International Society for Burn Injuries 27 (2001) 523-533.

延伸閱讀