透過您的圖書館登入
IP:13.58.182.29
  • 學位論文

應用於雷達感測系統的毫米波CMOS低雜訊放大器與頻率合成器

Millimeter-Wave CMOS Low-Noise Amplifier and Frequency Synthesizer for Radar Sensor Applications

指導教授 : 林佑昇

摘要


摘要 本篇論文主要是使用台積電90奈米CMOS製程元件,藉以設計與實現W頻帶的低雜訊放大器、直接注入鎖定除頻器,以及頻率合成器。而研究主題由以下四個部分構成: 第一部分為應用於W頻帶系統之77~81GHz低雜訊放大器。為了達到較高良率,我們使用三級串接放大器,以達到低雜訊、高增益和寬頻帶,此架構的第一與第二級為疊接放大電路,第三級架構為共源級放大器來達到增強訊號的效果,然後在輸入和輸出端使用T型匹配,加上在每一級下端的NMOS加入傳輸線電感,以得到較好的增益、S參數表現和較低的雜訊。最後在偏壓和閘源電壓端加上旁路電容使整體電路更為穩定。 第二部分延伸第一個電路設計,製作一個應用於92~94GHz低雜訊放大器。利用三級串接方式,且各級皆使用疊接放大電路,達到最高增益,另外在第一級加入電流源改善S11與線性度,並透過調整傳輸線數值使電路輸入輸出匹配。此結果適合應用於94GHz氣象雷達系統。 第三部分,我們利用90奈米CMOS製程設計一顆應用在79GHz之寬頻帶除二直接注入鎖定除頻器。在電路架構方面,使用電感電容共振腔振出電路所需頻帶訊號,再利用輸入功率匹配和輸入NMOS基極端加入電壓,致使除頻範圍能夠較寬,最後在輸出端加上二級的緩衝電路,解決輸出失真問題以及提高輸出功率,而偏壓端亦加上旁路電容使整體電路穩定。 第四部份嘗試製作一個應用於W頻帶的頻率合成器,此部分的壓控振盪器、注入鎖定除頻器、電流模態邏輯電路、相位偵測電路、電荷幫浦電路和濾波器,皆使用傳統電路架構,並調整各方塊參數將數值優化,而其元件皆使用台積電90奈米製程,使電路能夠操作在高頻,而此結果可使用於76~77GHz長距離與77~81GHz短距離汽車雷達系統。

並列摘要


Abstract The purpose of this thesis is to design and implement the W-band low-noise amplifiers, injection-locked frequency divider and frequency synthesizer. The thesis can be divided into four parts: In the first part, a 77~81 GHz low noise amplifier is designed for W-band system. In order to achieve the highest values, we design a three stage cascade amplifier. In the previous two stages we use a cascade circuit and the other stage we use a current source circuit which can increase the signal intensity. Then we use “T-matching” technique at both input and output term. Moreover, we add transmission line at the source of bottom NMOS to obtain flat high gain (S21), low noise figure and better “ S-parameter” performances. Finally, we put bypass capacitances at the “VDD” and “VGS” term to make our circuit more stable. The second part is continuous the first chip, we design a 92~94GHz low noise amplifier. The structure of this design is three stage cascade consisted of cascode circuit to maximum the gain. Furthermore, we put current source to improve S11 and linearity and adjust the parameter of the transmission lines to match input-output of circuit. The result of this design can be used for 94GHz weather radar system. In the third part, we use TSMC 90nm devices to design a W-band wide locking range divide-by-2 injection-locked frequency divider. In this case, we use LC-Tank to generate the signal suitable for particular frequency range. We also utilize input power matching and add “VDD” at NMOS body of the input term to up the divide range more broad. Finally, we put two stage buffer circuit at the output term to solve distortion problem and also raise output power. Moreover, we put bypass capacitances at “VDD” term again to make all circuit more stable. In the last part, we attempt to fabricate a frequency synthesizer for W-Band. This part circuits such as voltage control oscillator, injection-locked frequency divider, current mode logic, phase frequency detector, charge pump and filter used the traditional structure and tune the parameter from all block circuits to get the better values. As mentioned above, we also use tsmc 90nm devices, it let our design operator at high frequency. The effect of this circuit can applied for 76~77GHz long range and 77~81 short range automotive radar system.

參考文獻


References
[1] 林佑昇,邱弘緯,梁效彬 編著(2011): RFID 晶片設計。
[2] Y.-S. Huang, "Design and Realization of 2.4-GHz CMOS RF Front-end Receiving Circuit," MS Thesis, NTU, Dept. of EE, June 2000.
[3] Yunseo Park, Chang-Ho Lee, J.D. Cressler, and J. Laskar, "The Analysis of UWB SiGe HBT LNA for Its Noise, Linearity, and Minimum Group Delay Variation," Microwave Theory and Techniques, IEEE Transactions on Volume 54, Issue 4, Part 2, Page:1687-1697, June 2006.
[4] A. Y. K. Chen, Y. Baeyens, Y. K. Chen, and J. Lin "A Low-Power Linear SiGe BiCMOS Low-Noise Amplifier for Millimeter-Wave Active Imaging," IEEE Microwave and Wireless Components Letters, vol. 20, no. 2, pp. 103-105, Feb. 2010.

延伸閱讀