透過您的圖書館登入
IP:3.145.64.132
  • 學位論文

3,3ʹ-二甲基吡啶胺和銅金屬離子在酸性條件下的自組裝合成、結構鑑定與性質探討

A Study on the Self-Assembly of Di(3-pyridylmethyl)amine and Copper(II) Ions under Acidic Conditions

指導教授 : 吳景雲
若您是本文的作者,可授權文章由華藝線上圖書館中協助推廣。

摘要


本論文利用有機配子di(3-pyridylmethyl)amine (dpma)與銅金屬離子在酸性條件下,以自組裝合成法製得三種不同形態之產物。其一為籠形架構化合物[(NO3–)?{Cu2(μ-Hdpma)4}(NO3–)2](NO3–)5 (1)、[(SO42–)?{Cu2(μ-Hdpma)4}(CH3SO4–)2](CH3SO4–)4 (2)、[(SiF6–)?{Cu2(μ-Hdpma)4}(BF4–)2](BF4–)4 (3)、[(ClO4–)?{Cu2(μ-Hdpma)4}(ClO4–)2](ClO4–)5 (4)、[(BF4–)?{Cu2(μ-Hdpma)4}(H2O)2](BF4–)7 (7)、[(NO3–)?{Cu2(μ-Hdpma)4}(Cl–)2](NO3–)5 (8)、[[(NO3–)?{Cu2(μ-Hdpma)4}]3(ClO4–)4](NO3–)11(ClO4–)6 (9)、[(NO3–)?{Cu2(μ-Hdpma)4}(CF3SO3–)2][(NO3–)?{Cu2(μ-Hdpma)4}(H2O)2](NO3–)8(CF3SO3–)4 (10)、[(PF6–)?{Cu2(μ-Hdpma)4}(NO3–)2](NO3–)4.5(PF6–)0.5 (11)、[(SiF62–)?{Cu2(μ-Hdpma)4}(NO3–)2](NO3–)2(BF4–)2 (12)、[(SiF62–)?{Cu2(μ-Hdpma)4}(H2O)2](NO3–)2(BF4–)4 (12a)與[(NO3–)?{Cu2(μ-Hdpma)4}(NO3–)2](NO3–)2(BF4–)3 (13)。這些化合物均有相同M2L4型式之陽離子性籠性結構,再佐以不同種類和數目的陰離子以平衡電荷。其二為一維線性配位聚合物[Cu2(μ-dpma)(OAc)4] (5),以雙核[Cu2(OAc)4]為建構元,利用dpma為線性連接器組織而成。其三為複合離子化合物[H3dpma]4(CuCl4)5Cl2 (6),具有全質子化之H3dpma3+陽離子、金屬性陰離子CuCl42-與氯陰離子Cl-。另外亦進行化合物1的陰離子置換反應研究。 本論文依實驗內容可區分為三個部分。第一部分為探討陰離子在自組裝反應系統中的角色定位。此部分的研究得到了籠形架構化合物1 ~ 4和7、配位聚合物5以及複合離子化合物6。實驗結果顯示陰離子確實會影響產物的生成。籠形結構的形成需要有適當的模板陰離子存在,例如:NO3-、SO42-、SiF62-、ClO4-以及BF4-,均為高對稱之大體積陰離子。相反的,低對稱的OAc-離子與小體積的Cl-離子則無法導引籠形結構的生成。除了模板的角色外,陰離子在籠形結構中還有滿足銅金屬中心配位數的功能。 第二部分的研究為釐清各種陰離子在模板與配位角色上的能力分配。以Cu(NO3)2和不同的酸的組合,進行實驗得到化合物8 ~ 13。根據結果可初步推得陰離子擔任模板角色之能力大小為:SiF62-、PF6- > NO3- > SO42-、ClO4-、BF4-;配位能力大小為:Cl-、ClO4-、CF3SO3-、H2O > NO3- > BF4-、PF6-、SiF62-。 第三部分選取化合物1與NaSCN與NaN3在不同溶劑系統(純水系統與水–甲醇系統)下進行陰離子置換反應。在N3-的實驗中,可得到三維配位聚合物[Cu(μ-dpma)(μ-1,1-N3)(μ-1,3-N3)] (14)。在SCN-的實驗中若為純水系統,可得二維配位聚合物[Cu(μ-Hdpma)2(NCS)2](NO3)2 (15),若為水–甲醇系統,則會形成一維配位聚合物[Cu(μ-Hdpma)(NCS)3] (16)。化合物14 ~ 16均無法直接自組裝形成。 有機配子(dpma或Hdpma+或H3dpma+)在這些化合物中,呈現多種不同的分子構形,如trans–trans–syn、trans–gauche–anti和trans–trans–anti等構形。在熱穩定性的測量方面,熱重分析結果顯示這些化合物均約可穩定至150℃以上。

並列摘要


This thesis describes the self-assembly of a di(3-pyridylmethyl)amine (dpma) ligand and copper(II) ions under acidic conditions, Three distinctively different types of metal complexes have been isolated. Type I contains a series of tetragonal cage compounds, [(NO3–)?{Cu2(μ-Hdpma)4}(NO3–)2](NO3–)5 (1), [(SO42–)?{Cu2(μ-Hdpma)4}( CH3SO4–)2]( CH3SO4–)4 (2), [(SiF6–)?{Cu2(μ-Hdpma)4}(BF4–)2](BF4–)4 (3), [(ClO4–)?{Cu2(μ-Hdpma)4}(ClO4–)2](ClO4–)5 (4), [(BF4–)?{Cu2(μ-Hdpma)4}(H2O)2](BF4–)7 (7), [(NO3–)?{Cu2(μ-Hdpma)4}(Cl–)2](NO3–)5 (8), [[(NO3–)?{Cu2(μ-Hdpma)4}]3(ClO4–)4](NO3–)11(ClO4–)6 (9), [(NO3–)?{Cu2(μ-Hdpma)4}(CF3SO3–)2][(NO3–)?{Cu2(μ-Hdpma)4}(H2O)2](NO3–)8(CF3SO3–)4 (10), [(PF6–)?{Cu2(μ-Hdpma)4}(NO3–)2](NO3–)4.5(PF6–)0.5 (11), [(SiF62–)?{Cu2(μ-Hdpma)4}(NO3–)2](NO3–)2(BF4–)2 (12), [(SiF62–)?{Cu2(μ-Hdpma)4}(H2O)2](NO3–)2(BF4–)4 (12a) and [(NO3–)?{Cu2(μ-Hdpma)4}(NO3–)2](NO3–)2(BF4–)3 (13). These compounds have the discrete cationic M2L4 cage structure with a 2:4 metal-to-ligand ratio, and varying anions for charge-compensation. Type II shows a 1D coordination polymer structure, [Cu2(μ-dpma)(OAc)4] (5), constructed by dinculear [Cu2(OAc)4] secondary building units. Type III is an ionic compound [H3dpma]4(CuCl4)5Cl2 (6), comprising of four all-protonated H3dpma3+ cations, five metalloanions CuCl4-, and two Cl- anions in an empirical formula. Ion exchange studies of 1 with NaN3 and NaSCN have also been done. The first part of this thesis concerns the self-assembly of dpma with copper salts under specific acidic conditions by adding different kinds of acids that have the same anionic counterpart as copper salts used. On the basis of these results, anions plays a critical role in controlling the final structures of products, for which NO3-, SO42-, SiF62-, ClO4-and BF4- shows high symmetry and relatively large site as a templates to facifitate the formation of tetragonal cage structures, 1~4 and 7. In contrast, the low symmetry of OAc-and small size of Cl-don't used as templates to the generation of cages, but lead to a coordination polymer 5 and an ionic compound 6, respectively. The second part shows the self-assembly of dpma and Cu(NO3)2 with different kind of acids (HCl, H2SO4, HOAc, HClO4, HCF3SO3, HPF6 and HBF4). A family of tetragonal cage, 8~13, have been characterization. According these result suggest that anions act as template following the order: SiF62-, PF6- > NO3- > SO42-, ClO4-, BF4-, and show the coordination ability of: Cl-, ClO4-, CF3SO3-, H2O > NO3- > BF4-, PF6-, SiF62-. In part three, we describe the anion-exchange reactions of 1 with NaN3 and NaSCN under different solvent systems. In the case of NaN3, a 3D coordination polymer [Cu(μ-dpma)(μ-1,1-N3)(μ-1,3-N3)] (14) has been obtained from pure water system. In the case of NaSCN, a 2D coordination polymer [Cu(μ-Hdpma)2(NCS)2](NO3)2 (15) and a 1D coordination polymers [Cu(μ-Hdpma)(NCS)3] (16) have been obtained from an aqueous solution and a water-methanol mixture, respectively. It is note that these three polymeric structures commot be obtained directly. Finally, ligand conformations within these compounds are raried, including trans–trans–syn, trans–gauche–anti and trans–trans–anti conformations. On the other hand, these compounds are thermally stable as that their structures began to decompose when the temperature was raised to approaching 150℃.

參考文獻


1. Lehn, J. M. Science 1985, 227, 849-856.
2. Lehn, J. M. Proc. Natl. Acad. Sci. U. S. A. 2002, 99, 4763-4768.
3. Lehn, J.-M. Nobel lecture 1987.
4. Cram, D. J. Angew. Chem. Int. Ed. Engl. 1988, 27, 1009-1020.
5. Muller, P. Pure & Appl. Chem. 1994, 66, 1077-1184.

延伸閱讀