透過您的圖書館登入
IP:3.137.171.121
  • 學位論文

探討氣象探究網路競賽中學生科學探究能力的表現

Inquiry Based Learning in Taipei Weather Science Learning Network

指導教授 : 許瑛玿
若您是本文的作者,可授權文章由華藝線上圖書館中協助推廣。

摘要


本研究探討氣象探究網路競賽中學生科學探究能力表現的情形,先分析2006-2008年學生科學探究能力表現情形,再探討2009年修改學習單之後,學生科學探究能力的改變情形,以及學生對科學探究的信心和學習態度對探究能力表現的影響、教師對科學探究教學的看法對學習科學探究能力表現的影響。並透過焦點組的錄影觀察和晤談,分析個案教師在氣象探究網路競賽的指導策略。本研究採相關研究法,對象為台北市四到九年級學生,2006-2009年有效組數分別為23、40、55、51組。研究工具為對科學探究的信心量表、對自然科學的態度量表、教師對科學探究看法問卷、學生科學探究能力晤談單、教師科展指導晤談單。主要的研究結果如下:(一)從「形成問題假說」、「設計研究」、「收集呈現數據」及「分析闡述結果」四個向度進行獨立樣本單因子變異數分析,顯示「收集呈現數據」(F=3.79, p<.01)與「分析闡述結果」(F=13.30 , p<.01)兩個向度在2006-2009四年中達顯著差異,且2009年修改學習單後都有較好的表現。(二)學生在活動前後,對科學探究的信心量表總分達顯著差異(t=3.62, p<.01),顯示在經過本次活動後學生對科學探究學習更有信心。而對科學探究信心量表前後測與該量表四向度的交互作用達顯著水準(F=4.15, p<.01),顯示活動後學生對「收集呈現數據」上的表現更具信心。(三)學生在活動後,對自然科學的態度量表總分顯著高於活動前。而對自然科學態度與科學探究能力表現的相關分析,顯示學生對自然科學態度與探究表現呈線性關係,且對自然科學態度高的學生,其科學探究能力表現也較好。(四)教師對科學探究教學看法進行三因子獨立樣本變異數分析,顯示年齡分布在46-50歲與26-30歲且有使用過探究教學進行教學的教練,其對科學探究教學較有正向看法。(五)「形成問題與假說」共由四個事件所組成,個案教師引導學生在「形成問題」形成一個可以研究的問題;並在「問題的可測試性」將問題聚焦成一個可以進行科學調查的問題;在「釐清變因」引導學生釐清研究問題變項間的邏輯關係,並在「問題的可推論性」藉由推論來開拓問題的發展空間。「設計研究」共由三個事件所組成,在「設計可調查的研究」事件,個案教師引導學生設計科學調查,並引導學生對變因定出操作型定義以及適用的條件;並在「計畫的準確性」檢視所收集資料的適用性,作為調整科學調查方法和流程的依據,並反覆測試;在「變因的操弄」考慮較多的變項,將與研究問題相關較高的變項設計於研究調查中。「收集呈現數據」共由三個事件所組成,在「避免誤差」事件提醒學生蒐集資料過程應避免誤差和偏見;並在「數據的呈現與轉換」事件,引導學生選取較清楚且具意義的方式,呈現和轉換數據;在「數據的邏輯性」事件,教師引導學生以合乎邏輯的方式收集和分析資料。「分析闡述結果」共由三個事件所組成,在「解釋資料」事件,個案教師引導學生依據數據或資料的特徵、規律或趨勢作科學解釋;並在「資料的客觀性」事件,提出可支持論點的有力證據,及說明成為證據的依據;最後,教師在「下結論」事件引導學生綜合證據和適用範圍,對研究問題提出結論。

並列摘要


This study aims to understand student’s inquiry performances with the aid of the TWIN system. At first, we analyzed student’s inquiry performances from 2006 to 2008. The findings and implications were generalized to modify four worksheets in 2009. With their performances on the modified worksheets, we investigated how students’ scientific inquiry performances were influenced by their confidence and learning attitudes toward inquiry as well as teachers’ attitudes toward scientific inquiry instruction. Furthermore, we also analyzed a case teacher’s instructional strategies when she guided the target group to participate TWIN using observation and interview techniques. The participants were grades fourth to nine in Taipei city, and we recruited 23, 40, 55, and 51 groups between 2006 to 2009 , respectively, into our study. The research instruments included worksheets and questionnaire for teachers and students. Students needed to fill in questionnaires about their confidence in scientific inquiry and attitudes toward scientific inquiry. As for teachers’ part, they filled up the opinion survey on science inquiry instruction and about instructing science fairs. The main results of study included : (1) only the “collecting the data” (F=3.79, p<.01)and “interpreting the results” (F=13.30 , p<.01)showed significant differences from ANOVA within the four years from 2006 to 2009, but not “forming hypotheses” and “developing experimental designs” ; (2) students had higher confidence in scientific inquiry (t=3.62, p<.01) after finishing the competition. That is, the course helped students to process data with higher confidence(F=4.15, p<.01); (3) students’ attitudes in scientific inquiry made significant progress. Students’ attitudes were positively correlated with their inquiry performances– the higher scores on attitudes toward science they got, the better scientific inquiry performances they would have; and (4) teachers’ opinion survey on science inquiry showed that those who aged between 46 to50 and between 26 to30 as well as who implemented scientific inquiry had more supportive attitudes toward scientific inquiry instruction. Last, the case teacher’s instructional patterns emerged after our qualitative analysis of observation and interview data. First, she guided the forget group in “hypothesis formulation “as a series of four steps: the formation of questions, the feasibility of research questions, the clarification of possible variables, and future developments of questions. The critical element in “hypothesis formulation” was students’ ability to develop questions from hypothesis through scientific investigations. Second, “developing experimental designs” comprises three events: the design of experiments, the accuracy of planning, and the manipulation of variables. At this stage, the case teacher guided the target group to design a scientific investigation to answer a question or test a hypothesis. Third, “collecting the data” was also consisted of three elements: avoiding errors, presenting meaningful data, and collecting data in logic. That is, the case teacher guided the target group to organize and employ sufficient data to support their hypothesis. Last, the stage of “interpreting the results” was derived from three events, including the interpretation of data, ensuring the objectivity, and making a conclusion. The case teacher guided the target group to offer reasonable interpretations of the results and the reasonable scope of applying the conclusion.

參考文獻


張清濱(民89)。探究教學法。師友,395,45-49。
教育部(2008)。中小學資訊教育白皮書。台北:教育部。
許瑛玿、廖桂菁(2003)。情境式網路學習環境互動行為分析:以高中地球科學線上學習為例。師大學報:科學教育類,48(1),93-118。
詹秀玉、郭靜姿 ( 2007 ):科展表現優良師生之互動歷程分析。資優教育研究,7(2), 47 -68。
岳修平、鐘婉莉(2005)。專題式學習小組網路溝通互動之研究。教育學刊,25,1-23。

被引用紀錄


郭泓男(2013)。探討導入科學探究教學於科展培訓對學生科學探究能力之影響〔碩士論文,國立臺灣師範大學〕。華藝線上圖書館。https://www.airitilibrary.com/Article/Detail?DocID=U0021-0801201418031496
李孟柔(2016)。探討認知提示鷹架對國中七年級學生的生物概念學習與科學解釋能力之影響〔碩士論文,國立交通大學〕。華藝線上圖書館。https://www.airitilibrary.com/Article/Detail?DocID=U0030-0803201714400891

延伸閱讀