透過您的圖書館登入
IP:3.140.185.147
  • 學位論文

以加速度訊號輔助速度估測之性能評估

Performance Assessment of an Acceleration Signal-Assisted Velocity Estimator

指導教授 : 呂有勝
若您是本文的作者,可授權文章由華藝線上圖書館中協助推廣。

摘要


舉凡現今工業界常使用之控制機具與製程所需之機台等等,皆會應用到控制技巧。然而許多控制法則必須得知受控體之速度,所以如何獲得一個品質佳且精準的速度訊號是一個重要的課題。本論文對速度估測進行細部分析探討,提出動態補償速度估測器(Dynamically Compensated Velocity Observer, DCVO),並與多種速度估測器做比較。DCVO乃利用加速度訊號搭配動態補償器,以估測速度;由理論證實,其不但不會受到位置直流偏移量影響,而且對於常見的加速度訊號之直流偏移量不敏感。實驗設備使用精密線型平台系統進行速度估測及定位控制,採用美國德州儀器公司(Texas Instruments, TI) 所生產之TMS320C6713 DSP搭配具FPGA之擴充子板為實驗平台。 在開迴路速度估測實驗中,由實驗結果可知本文所提出之DCVO較其他估測法有良好的結果,且不會因加速規直流偏壓影響其估測值。而在定位控制方面,使用積分型可變結構控制(Integral Variable Structure Control, IVSC),並分別由ITM及DCVO兩種速度估測器估測出速度回授於控制器中,由實驗結果可得知本文所提出之DCVO 能有較佳的定位精度。此外,利用加速規量測得之訊號,搭配系統狀態方程式,求得系統干擾量並加以補償,能大幅降低干擾對系統之影響。

並列摘要


This paper presents a velocity observer, in which the acceleration signal is employed to assist the velocity estimation. In order to obtain accurate velocity information, a Dynamically Compensated Velocity Observer (DCVO) is designed and introduced. To show the effectiveness of the DCVO, it is experimentally compared with other velocity observation approaches. The DCVO is consisted of a dynamic compensator and a velocity observer. It is proven that the DCVO is not affected by the position ACC offset, and also not sensitive to the acceleration ACC offset. The experimental system consists of a commercially available single-axis linear stage, a brushless servo motor and a DSP/FPGA system used as the control kernel. We use C language and very-high-speed hardware description language (VHDL) as developing tools for the servo control system. Experimental results confirm the effectiveness of the DCVO. The Integral Variable Structure Control (IVSC) is used in positioning control with disturbance observer compensation, while the velocity signal is estimated through DCVO and ITM and compared. Experimental results show the DCVO estimated velocity leads to better positioning precision and sensitivity while used in IVSC.

參考文獻


[1] O. Wallmark, L. Harnefors, and O. Carlson, “An improved speed and position estimator for salient permanent-magnet synchronous motors,” IEEE Trans. Ind. Electron., vol. 52, no. 1, pp. 255-262, 2005.
[2] F. Jatta, G. Legnani, and A. Visioli, “Friction compensation in hybrid force/velocity control of industrial manipulators,” IEEE Trans. Ind. Electron., vol. 53, no. 2, pp. 604-613, 2006.
[3] S. Katsura, Y. Matsumoto, and K. Ohnishi, “Analysis and experimental validation of force bandwidth for force control,” IEEE Trans. Ind. Electron., vol. 53, no. 3, pp. 922-928, Jun. 2006.
[4] K. Khayati, P. Bigras, and L. A. Dessaint, “A multistage position/force control for constrained robotic systems with friction: Joint-space decomposition, linearization, and multiobjective observer/controller synthesis using LMI formalism,” IEEE Trans. Ind. Electron., vol. 53, no. 5, pp. 1698-1712, 2006.
[5] J. Kofman, X. Wu, T. J. Luu, and S. Verma, “Teleoperation of a robot manipulator using a vision-based human–robot interface,” IEEE Trans. Ind. Electron., vol. 52, no. 5, pp. 1206-1219, 2005.

被引用紀錄


李岳豈(2012)。改良型積分器於伺服馬達之定位控制應用〔碩士論文,國立臺灣師範大學〕。華藝線上圖書館。https://www.airitilibrary.com/Article/Detail?DocID=U0021-1610201315295465

延伸閱讀