透過您的圖書館登入
IP:18.117.196.217
  • 學位論文

奈米金屬之電漿子效應研究

Study of the plasmonics effects on nanometal

指導教授 : 洪榮木
若您是本文的作者,可授權文章由華藝線上圖書館中協助推廣。

摘要


局部表面電漿共振 (LSPR)是入射光與奈米粒子產生的一種物理現象(NPs)當入射光大於這個LSPR奈米金屬微粒(MNPs)時是非常適合應用在化學與生物感測裝置上,此外他能提高電場表面拉曼散射 (SERS) 和提高光譜效應,對表面電漿效應藉由入射光照射能將電子集中在局部區域。電漿結構的電磁相互作用有三個重要的特性,最初表面電漿的波長小於入射光賦予的高空間解析度,並且也在奈米尺寸裡有更好的能量控制能力,此外表面電漿共振是集中在奈米金屬局部的位置,隨著近場強度的增強電場會局部集中在不同的位置。在這篇論文中,我們使用有限元素法分析了電漿太陽能元件表面電漿效應,3D的模擬還原為2D,兩種模擬出來的結果是一致的,因3D模擬需要很多的時間與記憶體,還原至2D能減少電腦資源,也可以讓我們更詳細的檢查更大更多的參數空間。

並列摘要


Localized surface plasmon resonance (LSPR) is a physical phenomenon involving light which is produced when it combines with conductive nanoparticles (NPs) in which the incident wavelength is larger than it. LSPR spectroscopy of metal nanoparticles (MNPs) is a very useful method for chemical and biological sensing experiments and biosensing devices. Furthermore, it is responsible for the electromagnetic field enhancement that brings to surface enhanced Raman scattering (SERS) and other surface enhanced spectroscopic processes. For the surface plasmon resonance, the electric field of incident light can be located to the excited electrons of a conduction band. There are three important properties of plasmonic structures in term of electromagnetic interaction. Initially, the wavelength of surface plasmon is less than the incident light which gives a high spatial resolution and has a better control of energy flow in nano-scale. Secondly, plasmonic resonances of fields are localized at the interfaces and hot spots of plasmonic nanostructures. Also, field and intensity are enhanced at hot spots, and accumulation of enhance electromagnetic energy happened at certain spots of plasmonics nanostructures. In this paper, we analyzed surface plasmon effects on plasmonic solar cells by using the finite element method (FEM). The 3-D model is being reduced into a 2-D one as the two models give identical results in simulations. 3-D model needed more computational time and memory where a 2-D model will reduce it in a way and also allows us to examine a greater parameter space in more detail.

參考文獻


1. 工業技術研究院工業材料研究所,“奈米,不是啥稀米”,天下文化出版,台灣(2005)
2. 周趙遠鳳,“光學”,儒林圖書出版,台灣(2009)
3. 周趙遠鳳,電磁學,儒林圖書公司,民國一百年。
4. 洪群泰,「全場相位式表面電漿共振技術」,中央大學,碩士論文,民國九十 五年。
5. 翁志勳,「有限元素分析法分析光子晶體光纖」,中華大學,碩士論文,民國九十一年。

延伸閱讀