透過您的圖書館登入
IP:18.191.216.163
  • 學位論文

我國公路運輸系統能源供給基礎建設 與能源消費、二氧化碳減量成效關聯分析

The correlativity analysis between energy supply infrastructure, energy consumption and the reduction result of carbon dioxide emission for road transportation sector in Taiwan.

指導教授 : 張四立
若您是本文的作者,可授權文章由華藝線上圖書館中協助推廣。

摘要


據IEA2009全球能源展望預測,2030年全球能源需求、二氧化碳排放量將成長40%,運輸部門2030年之排放成長達50%,2050年甚至將飆高至80%之成長。化石能源依存度極高之運輸部門,在面對能源耗竭、國際減碳目標之壓力下,積極控管能源使用、發展低碳能源,將為我國能源安全、節能減碳重要之政策意向。 整體運輸部門中以公路運輸系統占90%以上二氧化碳貢獻最為關鍵,爰此,本研究藉由動態系統學方法,建構公路運輸系統模型,探論運具數量、旅運強度、新式運具成長、基礎設施普及與能源消費、二氧化碳排放之關聯性,並規劃4類10項情境:【1】情境1技術情境:逐年提升新車能源效率值、【2】情境2政策情境:發展低耗能及替代能源運具、【3】情境3經濟情境:開徵能源與環境稅、【4】情境4混合情境。再依4類情境下分為情境1A 2%進步率之技術、情境1B美國能源效率標準之技術;情境2A為一般成長政策、情境2B為加速成長政策;情境3B為開徵能源與環境稅;情境4A綜合情境1B及2A、情境4B綜合情境1B及2B、情境4C綜合情境1B及3A、情境4D綜合情境1B、2A及3A、情境4E綜合情境1B、2B及3A。模擬推測至2050之排放量與歷年減量成效。 情境4A與我國目前之策略目標最為接近,結果顯示呈持續成長之排放趨勢並無明顯之轉折下降現象,2020年較2005年能源消費成長22.26%、二氧化碳排放成長21.48%,2020年節能及減碳目標達成率為12.01%及16.43%;2025年節能及減碳達成率為13.26%及16.11%;2050年能源消費量成長89.29 %達25,610千公秉,二氧化碳排放量成長65.33%達59.33百萬噸,節能減碳成效不佳。 輔以經濟及加速政策工具之情境4E減量成效最佳,2025年受油電混合車及電動車急速成長,開始出現高峰轉折之減量效益。2020年較2005年能源消費成長13.50%、二氧化碳排放成長13.21%,2020年節能及減碳目標達成率為36.56%及46.27%;2025年節能及減碳達成率為43.20%及48.67%,仍皆無法達成節能、減碳目標;2050年含替代能源之總消費量成長32.77%達17,273千公秉,二氧化碳排放成長11.17%達39.90百萬噸。充電站及加氫站之基礎設施分別於2011及2036年需達50%以上之普及率。

並列摘要


According to the prediction of World Energy Outlook 2009 from International Energy Agency(IEA), the world demand for energy and carbon dioxide (CO2) emission will increase 40% and CO2 emission of transportation sector will also increase 50% and 80% in 2030 and 2050 respectively. In order to face up to the challenge of energy crisis and the pressure from global CO2 emission reduction, positive management of energy usage and development of low-carbon energy are important for energy security, energy saving, and CO2 emission reduction efficiency. The CO2 emission of road transportation sector was the majority for over than 90% of total emission and became the main contributor. Through System Dynamics approach, we’ve established a road transportation model to analyze the correlation between vehicle types, the amount of vehicles, intensity of transit, infrastructure availability, energy consumption and CO2 emissions, meanwhile, four scenarios were designed as followed to simulate CO2 emission in 2050. Scenario 1 (technical) – raising fuel efficiency for new vehicles; Scenario 2 (policy) – developing high fuel efficiency cars and alternative fuel. Scenario 3 (economic) – imposing tax on energy and environment. Scenario 4 (hybrid) – combination of Scenarios listed above. Furthermore, we categorized and subdivided them into 10 scenarios. Scenario 1A – yearly rate of progression set as 2%; Scenario 1B - achieving the new standard light-duty vehicle of US; Scenario 2A – general promotion scenario; Scenario 2B – strenuously promotion scenario; Scenario 3A – impose tax on energy and environment; Scenario 4A – combine Scenario 1B with 2A; Scenario 4B – combine Scenario 1B with 2B; Scenario 4C – combine Scenario 1B with 3A; Scenario 4D – combination of Scenario 1B, 2A and 3A; Scenario 4E – combination of Scenario 1B, 2B and 3A. Scenario 4A nearly approached to our policy target, nevertheless, the result revealed continuously increasing CO2 emission. Compared to 2005, in the year of 2020, there’ll be 22.26% increase in energy consumption and 21.48% increase in CO2 emission. The rate of achieving the goal of energy saving efficiency and CO2 emission reduction was 12.01% and 16.43% respectively in 2020, furthermore, 13.26% and 16.11% respectively in 2025. The energy consumption in 2050 will be 25,610 million liters which increases 89.29% compared with nowadays; CO2 emission in 2050 will be 59.33 million tons which increases 65.33% compared with nowadays. There’s no significant effect in energy saving and CO2 emission reduction. Scenario 4E was the most effective strategy. Although there was a remarkable reduction in energy saving (43.20%) and CO2 emission (48.67%) due to the well-developed Hybrids Electric Vehicle (HEV) and Electric Vehicle (EV) in 2025, it still failed to achieve the objective. The total energy consumption, including alternative fuels, is 17,273 million liters (increases 32.77%); CO2 emission is 39.90 million tons (increases 11.17%) respectively in 2050. The prevalence of charging stations and hydrogen fuelling stations should increase up over 50% in 2011 and 2036 respectively.

參考文獻


3、左峻德(2006),推動車輛使用酒精汽油替代燃料可行性策略分析及成本效益評估計畫,行政院環境保護署。
38、林瑞榕(2009),研擬汽油汽車二氧化碳排放管制標準暨相關測試程序之研究,行政院環境保護署。
44、陳增堯(2007),電動機車技術發展現況及推廣模式評估,行政院環境保護署。
47、黃運貴(2005),運輸部門能源消費量及節能措施之研究,臺灣大學土木工程學研究所博士論文。
60、顏君聿(2009),我國運輸部門低碳發展策略探討,經濟部能源報導月刊2009.08期,p13-16。

被引用紀錄


唐維妮(2013)。ICT產業發展對工業部門能源消費的影響-台灣個案分析〔碩士論文,淡江大學〕。華藝線上圖書館。https://doi.org/10.6846/TKU.2013.00659
陳文賓(2011)。以系統動態學為基之澎湖低碳島綠色運輸政策規劃效益評估研究〔碩士論文,國立臺北科技大學〕。華藝線上圖書館。https://doi.org/10.6841/NTUT.2011.00683
陳俊霖(2013)。應用專利分析探討我國電動汽車技術發展〔碩士論文,國立屏東科技大學〕。華藝線上圖書館。https://doi.org/10.6346/NPUST.2013.00215
張元立(2011)。台灣住宅部門主要電器電力消費因素之探討-系統動態學之應用〔碩士論文,國立臺北大學〕。華藝線上圖書館。https://www.airitilibrary.com/Article/Detail?DocID=U0023-0709201100440200
鐘佩蓉(2012)。我國氫能燃料電池發展之經濟與環境效益評估〔碩士論文,國立臺北大學〕。華藝線上圖書館。https://www.airitilibrary.com/Article/Detail?DocID=U0023-2208201212132300

延伸閱讀