透過您的圖書館登入
IP:18.118.138.33
  • 學位論文

利用陽極氧化鋁模板製備聚合物抗反射薄膜於染料敏化太陽能電池之應用

Fabrication of Polymer Anti-reflection Film on Dye-sensitized solar cell by Anodic Aluminum Oxide Template

指導教授 : 蔡振凱
若您是本文的作者,可授權文章由華藝線上圖書館中協助推廣。

摘要


在本研究中,主要為利用陽極氧化鋁模板製備聚合物抗反射薄膜來提高染料敏化太陽能電池之入射光穿透率。在論文中,利用旋塗複製法,將陽極氧化鋁模板上的奈米結構複製於PMMA聚合物薄膜上,最後將聚合物抗反射薄膜貼附於染料敏化太陽能電池表面。 本論文實驗利用0.1M草酸溶液,以及80V外加電壓製作陽極氧化鋁模板,實驗結果之奈米孔洞大小約為150nm左右。本論文使用15wt% 之PMMA溶液,利用旋轉塗佈將PMMA旋塗於陽極氧化鋁模板上,再利用高溫爐烘烤200℃,30分鐘,最後利用氫氧化鈉溶液移除陽極氧化鋁和鋁基板,便得到具有次波長結構之PMMA聚合物抗反射薄膜。染料敏化太陽能電池在室溫下,將顆粒大小約為25nm的二氧化鈦奈米粒子,利用刮刀塗佈法塗佈在FTO導電玻璃基板上,光陽極經過機械壓縮處理,以N3染料作為染料敏化太陽能電池之敏化劑。 在本研究中,我們證實了一個有效的方法將TiO2薄膜經過機械壓縮處理後,可以使得TiO2粒子與粒子連接性增加。經過實驗證明,我們發現當經過壓縮壓力279kg/cm2處理後之TiO2光陽極,所製備而成的染料敏化太陽能電池表現出最佳的光電流密度(JSC= 12.23 mA/cm2)和光電流轉換效率(η= 4.94 %)。相比沒有經過機械壓縮處理之TiO2薄膜所製備而成的染料敏化太陽能電池其光電流轉換效率從4.20 % 提升至4.94 % ,其提升17.61%,有顯著的提升。 染料敏化太陽能電池照光面上,貼附了具有次波長結構的PMMA抗反射薄膜,與裸玻璃所製成之染料敏化太陽能電池相比較,可以有效的提升JSC與轉換效率,由14.77提升至15.79 mA/cm2,轉換效率部分由6.26 %提升至6.79 %,提升了8.47%。經過實驗證明,貼附了本實驗所製備而成之具有次波長結構PMMA抗反射薄膜的染料敏化太陽能電池可以有效地提升整體的效能。

並列摘要


In this study, mainly for the use of anodic aluminum oxide (AAO) template for preparing polymeric anti-reflective film to improve incident penetration of dye-sensitized solar cells (DSSCs). In this paper, anodic aluminum oxide nano-structures are replicated on poly-methyl methacrylate (PMMA) polymer film was by spin-coated replication method, the polymer anti-reflection film attached to the surface of the DSSCs. Fabrication of the pore size of about 150nm nanoporous template by use 0.1M oxalic acid solution, and the 80V voltage produced outside AAO template. In this paper, using 15wt% solution of PMMA, the PMMA spin-coated on AAO template, follow baked at 200 ℃, 30min by high-temperature furnace. Finally, utilization NaOH solution to remove the AAO and aluminum plate, obtained PMMA polymer with sub-wavelength structure with antireflection film. Titanium dioxide (TiO2) nanoparticles (NPs) diameter of about 25nm was deposited on the fluorine-doped tin oxide (FTO) glass substrate by doctor blade coating. The sensitizer N3 was used on the dye-sensitized solar cell. In this study, TiO2 films were compress by mechanical compression to make the distance between particles and particles closer, in order to make the electron transmission easier. We found that when the compression pressure is 279kg/cm2 will have the best photocurrent density JSC= 12.23 mA/cm2 and photoelectric conversion efficiency η = 4.94% in dye-sensitized solar cell. Compared to the DSSC without mechanical compression, η= 4.20 %, the overall conversion efficiency had improved over 17.61%. Dye-sensitized solar cells by light plane, attached to the PMMA films with sub-wavelength anti-reflective structure, with the bare glass dye-sensitized solar cell made of comparison, can effectively improve the JSC and conversion efficiency, increased from 14.77 to 15.79mA/cm2, conversion efficiency increased from 6.26 to 6.79%, improved by 8.47%. The experiments show, in, attached to the preparation of this experiment is made of PMMA structure with subwavelength anti reflective film dye-sensitized solar cells can effectively improve the overall performance.

參考文獻


[1] 馮垛生,2009,“太陽能發電原理與應用”,五南圖書出版。
[48] 林明獻,2007,“太陽能電池技術入門”, 第二章.
[2] Kazmerski L.L., 2006, “Solar photovoltaics R&D at the tipping point: A 2005 technology overview”, Journal of Electron Spectroscopy and Related Phennomena, vol. 150, pp. 105-135.
[4] Green M.A., Emery K., Hisikawa Y., and Warta W., 2008, “Solar Cell Efficiency Tables (Version 31)”, Prog. Photovolt Res. Appl., vol. 16, pp. 61-67.
[6] Bean K., 1978, “Anisotropic etching of Silicon”, IEEE Transactions onElectron Devices, vol. ED-25, No. 10, pp.1185-1193.

延伸閱讀