透過您的圖書館登入
IP:3.142.12.240
  • 學位論文

以軟式微翻製程製作高分子非對稱光柵耦合波導元件之研究

Fabrication of Asymmetric Bragg Coupled Devices with Polymer Waveguides by Using Micro-Molding Process

指導教授 : 莊為群
若您是本文的作者,可授權文章由華藝線上圖書館中協助推廣。

摘要


本研究提出結合全像干涉微影技術及軟式模仁的複印製程技術,並配合黃光微影製程光學技術,來製作高分子非對稱光柵耦合波導元件。 本製程中先以黃光微影製程方式製作出脊樑式波導母片,再以全像式干涉微影技術於波導母片上進行干涉,製作出高分子布拉格光柵波導元件,並以此光柵波導元件配合軟式印刷(soft-printing)技術之微接觸成形(micro-contact printing)、毛細管成形(micromolding in capillaries)技術與複製成形(replica molding)技術來製作高分子光波導濾波元件模仁,再配合高分子材料製作出非對稱光柵耦合波導元件。 此高分子非對稱光柵耦合波導元件軟式翻模的模仁可達到大量生產的效果,具有製程時間縮短、低成本、及極低光損耗等之優點。 研究中會以掃描式電子顯微鏡(SEM)及原子力顯微鏡(AFM)觀察表面光柵,結合 近場光學量測觀察濾波並紀錄實驗之結果,並研究探討其光學傳輸特性。

並列摘要


In this thesis, we propose a novel technique of fabricating an asymmetric Bragg coupled devices with polymer waveguides by using master molding of soft printing with the photolithography and holographic technique. First we made a ridge waveguides component through photolithography. We used the holography interference to implement a polymer Bragg waveguide component then with micro-contact printing of the soft printing, micro-molding in capillaries and replica molding to fabricate the molding of soft asymmetric Bragg coupled device with polymer waveguides component. Finally, we utilized formed soft waveguide molding along with polymer materials to implement an asymmetric Bragg coupled devices with waveguides component. It is easily to achieve the mass production. It has some advantages including process time shortening, low cost and lowest optical loss by using technique of soft molding of asymmetric Bragg coupled devices with polymer waveguide. In order to observation of the surface grating and record the results of this experiment accurately, we utilize the AFM (Atomic Force Microscopy) and SEM (Scanning Electron Microscopy ). Whereas the optical transmitting features are measured through the optical measuring system.

參考文獻


[1] Watanabe, M. Tsuchimori, A. Okada, and H. Ito, “Mode selective polymer channel waveguide defined by the photoinduced change in birefringence”, Appl. Phys. Lett., Vol. 71, pp. 750-752, 1997
[2]M. H. M. Klein Koerkamp, M. C. Donckers, B. H. M. Hams, and W. H. G. Horsthuis, “Design and fabrication of a pigtailed thermo-optic 1x2 switch,” Proc. Integrated Photonics Research Conf., vol. 3, 1994, pp. 274-276.
[3]L. Eldada, and L. W. Shacklette, “Advances in polymer integrated optics,” Journal of selected topics in quantum electronics, vol. 6, 2000, pp. 54-68.
[4] H. Nishihara, Masamitus Haruna and Toshiaki Suhara, Optical Integrated Circuites, McGraw-Hill Company, Inc.,2001.
[5] T. C. Sum, A. A. Bettiol, J. A. van Kan, F. Watt, E. Y. B. Pun, and K. K. Tung, “Proton beam writing of low-loss polymer optical waveguides”, Appl. Phys. Lett. 83, 1707 (2003)

延伸閱讀