透過您的圖書館登入
IP:18.191.223.123
  • 學位論文

鈹銅探針之複合加工法研究

Study on Hybrid Micro-Machining Method of Beryllium Copper Probe

指導教授 : 黃俊德 張信良
若您是本文的作者,可授權文章由華藝線上圖書館中協助推廣。

摘要


本論文使用滾壓與研磨技術,對鈹銅高強度材料之微探針進行加工成型。首先利用鑽石砂輪,配合高速氣動主軸進行磨削,使探針呈現針型外觀,再利用自行研發之滾壓機構,以 7kg.cm扭力輸出至滾壓輪進行滾壓,此加工方式能達到光滑表面,文中並與純研磨探針製程比較其差異性。本論文主要研究純研磨加工與研磨-滾壓複合加工成型方式製作微探針,所得成品利用場發射掃描式電子顯微鏡(FE-SEM)與表面輪廓儀(Surface Profilometer)比較兩種加工結果。從加工數據上顯示,鈹銅在純滾壓與純研磨加工方式下,以純滾壓加工製作出之微探針表面較為優異,但純滾壓方式針尖直徑無法降至100μm以下。本文提出利用研磨-滾壓複合加工方式,首先以研磨加工快速降低針尖直徑,再行滾壓加工,總體製程僅需時間共約4分鐘,較純研磨需6分鐘縮短了33%的加工時間,而表面粗糙度值則降低約50%。

關鍵字

延性材料 鈹銅 微探針 滾壓 表面粗糙度

並列摘要


In this thesis, rolling and grinding technologies are applied to do the micro-machining of microprobe with high strength materials of beryllium copper. Firstly, the diamond wheel driven by high speed pneumatic spindle is applied to grind the microprobe and makes the probe having the appearance of the needle. Then, the self-developed rolling machinery under 7kg.cm torque is applied to achieve a smooth surface. The results are compared with the machining by the rolling and grinding. In the thesis, two methods are studied to manufacture the microprobe. The first is plain grinding, and the second is grinding-rolling compound process. After that, FE-SEM and Surface Profilometer are applied to investigate the surface quality and show the differences between two methods. According to the roughness, the rolling method is better than grinding method at the microprobe surface. Because the pure rolling is unable to reduce the end diameter of microprobe smaller than 100μm, the combined grinding and rolling method which spend less time than the grinding method is proposed. The machining time of combined method is only 4 minutes while the pure grinding process takes 6 minutes. The value of surface roughness is reduced to be 50%.

參考文獻


[8] 朱信偉,2012年,「高速研磨陶瓷氧化鋯製程之研究」,國立虎尾 科技大學,碩士論文。
[11] 林育成,2012年,「微鎢探針複合電化學微加工之探討」,國立虎尾科技大學,碩士論文。
[12] G. Binning, H. Rohrer, C. Gerber, and E. Weibel,“Surface studies by scanning tunneling microcopy”, 1982, Phys. Rev. Left 49.57.
[13] G. Binning, C. F. Quate, and C. Gerber, “Atomic force microscope”, 1986, Phys. Rev Len. 56. 930.
[15] 黃眉欣,2010年,「高速研磨小角度微米探針」,國立虎尾科技大學,碩士論文。

延伸閱讀