透過您的圖書館登入
IP:18.116.90.246
  • 學位論文

利用毛細效應之微混合器及其在凝血酶原時間之應用

Capillary Effect of Microfluidic Mixer and Its Application on Prothrombin Time Tests

指導教授 : 郭如男
若您是本文的作者,可授權文章由華藝線上圖書館中協助推廣。

摘要


本研究目的是在微流體晶片上設計被動式微混合器來進行流體的混合,目標希望能夠達到混合時間短且效率高的微混合器。實驗以毛細管力作為微混合器的驅動力,其優點是不需外加機械裝置或者外部力場,如此便可節省外加裝置的成本以及空間。晶片製作是採用微機電製程,先製作出SU-8母模,再利用高分子材料PDMS澆注在母模進行翻模,之後經由氧電漿改質接合即完成微混合器實驗晶片。實驗首先比較方波型、曲線型及鋸齒型三種微混合器的混合效率,結果以方波形最佳,之後再由方波形圖案設計出四種Type微混合器,實驗結果以Type 4的混合效率最高可達76%,混合時間為3.7秒,體積流率為0.59 μl/s。最後再使用Type 4混合流道進行凝血酶原時間量測,實驗結果顯示,血漿與凝血酶原試劑經過混合後平均12.5秒其透光率便會因為血漿的凝固作用而急遽降低。

並列摘要


The purpose of this study is to design a passive micromixer on microfluidic chip that performs plasma mixing function. Capillary action is an effective way to driving a liquid into a microfluidic channel. Owing to the strong capillary force, plasma was introduced into the microfluidic channel without any external driving force. Experiments are performed to investigate the mixing performance of three microfluidic mixers with square-wave, curved and zig-zag microchannels, respectively. Of the three microchannels, the square-wave microchannel is found to yield the best mixing performance, and is therefore selected for design optimization. Four microfluidic micromixers incorporating square-wave PDMS microchannels with different widths in the x- and y-directions are fabricated using conventional photolithography techniques. The results show that given an appropriate specification of the microchannel geometry, a volume flow rate of 0.59 μl/s and a mixing efficiency of more than 76% can be obtained within 3.7 s. The practical feasibility of the proposed device is demonstrated by performing a prothrombin time (PT) test. It is shown that the time required to perform the PT test using the proposed microfluidic mixer is 12.5 s.

並列關鍵字

Capillary force Microfluidic Micromixer Prothrombin Time PDMS

參考文獻


[1] K. Sato, M. Yamanaka, T. Hagino, M. Tokeshi, H. Kimura, and T. Kitamori, “Microchip-based enzyme-linked immunosorbent assay (microELISA) system with thermal lens detection,” Lab on a Chip, vol. 4, pp.570-575, 2004.
[2] A. Manzs, N. Graber, and H. M. Widmer, “Miniaturized Total Analysis Systems: A Novel Concept for Chemical Sensing,” Sensors and Actuators B: Chemical, vol. 1, pp. 244-248, 1990.
[3] N. Vandelli, D. Wroblewski, M. Velonis, and T. Bifano, “Development of a MEMS microvalve array for fluid flow control,” Journal of Microelectromechanical Systems, vol. 7, no. 4, pp. 395-403, 1998.
[4] K. S. Yun, I. J. Cho, J. U. Bu, C. J. Kim, and E. Yoon, “A surface-tension driven micropump for low-voltage and low-power operations,” Journal of Microelectromechanical Systems, vol. 11, no. 5, pp. 454-461, 2002.
[5] Z. Yang, S. Matsumoto, H. Goto, M. Matsumoto, and R. Maeda, “Ultrasonic micromixer for microfluidic system,” Sensors and Actuators A: Physical, vol. 93, pp. 266-272, 2001.

延伸閱讀