透過您的圖書館登入
IP:3.144.243.184
  • 學位論文

永磁式線性同步馬達應用輸出回授之SOS控制系統設計

An SOS Output Feedback Control Design for PMLSM Sevro Drive

指導教授 : 丁振聲
若您是本文的作者,可授權文章由華藝線上圖書館中協助推廣。

摘要


本文以背進式原理設計永磁式線性同步馬達之位置控制系統,根據旋轉座標下的馬達數學模型,推導背進式的控制理論。系統化的分析與應用平方項總和的方法設計穩定的控制法則。同時考慮馬達全部的動態效應,包括馬達機械運動與線圈電氣特性,並考慮系統操作在無負載參數變異及干擾的情況,系統化的分析與模擬建立完整的控制理論。沿用此方法於非線性觀測器之設計,估測系統的狀態取代直接量測的電路,結合背進式控制原理,推導輸出回授背進式控制理論,完成輸出回授之馬達位置伺服,進而降低了系統結構之複雜度。在實現控制理論方面,使用數位訊號處理器 TMS320F28335 做為系統控制核心,撰寫控制程式,組裝硬體、進行實體控制,最後經由電腦模擬與實驗過程測試控制器對於各種運動軌跡的控制成效,驗證控制理論的正確性與實用性,完成馬達驅動系統之設計。

並列摘要


This thesis is based on the principle of backstepping control to develop a position-servo control system for permanent magnet linear synchronous motor (PMLSM) drive system. In the derivation of backstepping control scheme, the dynamic model is first constructed by using the concept of field-oriented control. Then, systematic design of stability control law is carried out based on the principle of sum of the squares approach. In particular, this study considers the motor mechanical and electrical dynamics. The motor drive is constructed on the nominal conditions; that is, the system has no payload or encounters parameter variations. Furthermore, to facilitate designing work, an SOS nonlinear observer is utilized to estimate the system states instead of direct measurement. It is assumed that the motor’s displacement is the only signal that can be obtained. Combined with the SOS nonlinear observer and backstepping control strategy, an output feedback control approach is derived to reduce the complexity of the hardware installation. To realize the developed control scheme, a digital signal processor (TMS320F28335) is used as the core of experimental platform, where various motion trajectories are adopted to examine the performance of the proposed control system. The correctness and validity of the proposed approach are verified via the computer simulation and practical experiments.

參考文獻


[2] I. Takahashi, “Decoupling control of thrust and attractive force of a LIM using space vector controlled inverter,” IEEE Trans. Ind. Applica., vol. 29, no. 1, pp. 161-167, Jan.-Feb. 2005.
[3] G.S. Kim, I.J. Ha, and M.S. Ko, “Control of induction motors for both high dynamic performance and high power efficiency”, IEEE Transactions on Industrial Electronics, vol. 39, no. 4, pp. 323–333, 1992.
[4] M.T. Lin and T.H. Liu, “Sensorless synchronous reluctance drive with standstill starting,” IEEE Transactions on Aerospaceand Electronic Systems, vol.36, no. 4, pp. 1232-1241, 2000.
[5] C.G. Chen, T.H. Liu, M.T. Lin, and C.A. Tsai, “Position control of a sensorless synchronous reluctance motor,” IEEE Transactions on Industrial Electronics, vol. 51, no. 1, pp. 15-25, 2004.
[6] S. Ichikawa, M. Tomita, S. Doki, and S. Okuma, “Sensorless control of synchronous reluctance motors based on extended EMF models considering magnetic saturation with online parameter identification,” IEEE Transactions on Industrial Applications, vol. 42, no. 5, pp. 1264-1274, 206.

被引用紀錄


劉峻汎(2015)。永磁式線性同步馬達伺服驅動系統於靜止座標下之強健控制設計〔碩士論文,國立虎尾科技大學〕。華藝線上圖書館。https://doi.org/10.6827/NFU.2015.00157

延伸閱讀