透過您的圖書館登入
IP:18.191.180.60
  • 學位論文

銀鑭合金薄膜之抗氧化與抗硫化探討

Study on Against Oxidation and Sulfidation of Ag(La) thin film

指導教授 : 方昭訓
若您是本文的作者,可授權文章由華藝線上圖書館中協助推廣。

摘要


本研究主要探討Ag(La)合金薄膜之抗氧化與抗硫化之性質,以改善銀薄膜之高溫聚集與玻璃基板的附著性,並防止其在大氣中硫化與氧化。本實驗利用磁控濺鍍法在SiO2基板上製備Ag(0.54 - 8.74 at.% La)合金薄膜,薄膜成分以EDS分析,後續製程利用爐管對其合金薄膜進行400oC–800oC持溫1小時熱處理,並以歐傑能譜分析儀分析原子的擴散行為,藉由X光繞射儀、掃瞄式電子顯微鏡與穿透式電子顯微鏡觀察薄膜的顯微結構,探討Ag(La)合金薄膜之結構變化。同時,使用四點探針量測薄膜片電阻值變化。而薄膜與二氧化矽的附著性測試乃藉Scotch tape test 來評估。 實驗結果顯示,銀薄膜中之La摻雜原子經退火後會擴散至薄膜表面及薄膜與二氧化矽界面,並與氧原子反應而在表面處形成氧化層,而薄膜電阻率亦隨著La含量增加而有增高的趨勢。對於薄膜的抗硫化性而言,銀合金薄膜先作500-600oC的氧化預熱處理使其表面形成鈍化層,再與未形成鈍化層之合金薄膜試片經硫化後探討比較抗硫化的現象,其中以氧化預熱處理600oC之Ag (2.80-8.74 at.% La)薄膜的抗硫化性最佳,而含2.80 at.% La之銀薄膜最低片電阻為2.34 Ω/□。

並列摘要


The characteristics of Ag(La) alloy thin films and its applications as the materials of interconnect were investigation in study. This work aims at preparing a high adhesion, oxidation resistance and self-passivated Ag(La) alloy thin film, which will be potentially adopted as gate material on TFT-LCD and interconnection on microelectronics. Ag(0.54-8.74 at.% La) films were prepared on SiO2/Si substrate by sputtering method and were subsequently annealed by furnace in a temperature range of 400°C - 800°C for 1 hour in oxygen ambient. Self-passivated Ag thin film in the form of La2O3/Ag/SiO2 was therefore obtained because La diffused easily from matrix toward the surface and reacted with the oxygen by forming La2O3. The formation of La2O3/Ag /SiO2 improved the resistivity, adhesion to SiO2, oxidation resistance and passivative behavior of the studied film. Besides, the Ag alloy films pre-annealed at 500°C in oxygen ambient reveal a superior sulfidation resistance . The pre-annelaed Ag(2.80 at.% La) thin film has the lowest sheet resistance of 2.34 Ω/□ .

參考文獻


[1] The International Technology Roadmap for Semiconductor, (Semiconductor Industry Association, San Jose, 2007).
[2] S. P. Murarka,”Multilevel interconnections for ULSI and GSI”, Mater. Sci. Eng., 19 (1997) 87.
[3] G. W. Ray, “Low dielectric constant materials integration challenges”, Mat. Res. Soc. Symp. Proc.,511 (1998) 199.
[4] S. P. Murarka, I. V. Verner and R. J. Gutmann, “Copper-Fundamental Mechanisms for Microelectronic Application”, (John Willy & Son, New York, 2000).
[5] N. Awaya and Y. Arita,”Copper chemical vapor deposition from Cu (hexafluoroacetylacetonate) trimethylvinylsilane”, J. Electron. Mater., 21 (1992) 959.

延伸閱讀