透過您的圖書館登入
IP:3.16.29.209
  • 學位論文

利用電泳法製備多層奈米二氧化鈦薄膜及散射層應用於染料敏化太陽能電池之研究

Applications of multilayer nanocrystalline TiO2 thin films and scattering layer prepared by electrophoretic deposition on dye-sensitized solar cells

指導教授 : 閔庭輝
若您是本文的作者,可授權文章由華藝線上圖書館中協助推廣。

摘要


本研究以電泳沉積法製備多層二氧化鈦(TiO2)薄膜與散射層應用於染料敏化太陽能電池(dye-snesitized solar cells, DSSCs)。由FE-SEM分析,以電泳沉積法製備二氧化鈦薄膜具有多孔性結構,其多孔性結構能增加更多染料之填充。且利用電泳沉積法製備多層二氧化鈦薄膜,能有效的改善薄膜表面之裂縫,而加了散射層之後,能增加入射光的行走路徑,進而提高入射光與二氧化鈦粒子之間的碰撞機率,以提升染料敏化太陽能電池之效率。XRD分析二氧化鈦薄膜,其薄膜較強的結晶相為銳鈦礦相。以UV-Vis分析二氧化鈦薄膜吸附N3染料,吸收波長明顯從紫外光提升至可見光範圍,對於光電轉換效率有很大的幫助。在仿照太陽光模擬器之燈源照射下(AM 1.5, 100mW/cm2),二氧化鈦薄膜染料敏化太陽能電池的能量轉換效率為3.243%。由EIS分析可發現,當二氧化鈦薄膜厚度增加時,Rk的電阻值就變小,其主要原因是跟染料吸附量有關;照光後染料激發之電子增多,使得電阻值下降。

並列摘要


The study is mainly to discuss that the effects of multilayer nanocrystalline TiO2 thin films and scattering layer prepared by electrophoretic deposition (EPD) on the performance of the dye-sensitized solar cells (DSSCs). In the field emission scanning electron microscopy (FE-SEM) analysis, TiO2 thin films prepared by EPD have the porous structure. The porous structure is advantageous in the dye-loading capacity. And used multilayer nanocrystalline TiO2 thin films prepared by EPD, the cracks can improved on the thin films surface. When added scattering layer in DSSCs, it can increase the path length of the incident light in the nanocrystalline TiO2 thin films. From the results of XRD analysis, the strong crystallization of TiO2 thin film is the anatase phase. UV-Vis spectrophotometer analysis can tell the situation of N3 dye adsorbing on the TiO2 thin films; the absorption wavelength obviously promotes from the ultraviolet ray to the visible light scope, and this is great help for conversion efficiency of DSSCs. Under the irradiation of the sunlight simulator (AM 1.5, 100 mW/cm2), the energy conversion efficiency of DSSCs with the TiO2 thin films is 3.243%. In the electrochemical impedance spectroscopy (EIS) analysis, the value of Rk decreases with increasing the thickness of TiO2 thin films, the primary cause is related with the dye adsorptive capacity. It may be due to the stimulation of illumination for the electron in the dye, resulting in the reduced of the Rk.

參考文獻


[1]雷永泉, 李源弘, 新能源材料, 新文京開發出版, 書號A267, 2004.
[2]M. Grätzel, “Photoelectrochemical cells,” Nature, 414, 338-344, 2001.
[3]黃建昇, 結晶矽太陽電池發展近況, 工業材料雜誌, 203期, 150, 2003.
[4]郭明村, 薄膜太陽電池發展近況, 工業材料雜誌, 203期, 138, 2003.
[5]Martin A. Green1, Keith Emery, Yoshihiro Hishikawa, Wilhelm Warta, “Short Communication Solar cell efficiency tables (Version 32),” Progress in Photovoltaics: Research and Applications, 16, 435-440, 2008.

被引用紀錄


張溏芸(2014)。金奈米粒子鑲埋於染料敏化太陽能電池光電極之研究〔碩士論文,國立虎尾科技大學〕。華藝線上圖書館。https://doi.org/10.6827/NFU.2014.00236
林宇倩(2012)。不同形狀的金奈米粒子應用於染料敏化太陽能電池光電極之研究〔碩士論文,國立虎尾科技大學〕。華藝線上圖書館。https://www.airitilibrary.com/Article/Detail?DocID=U0028-0208201216163700
李金翰(2017)。染料敏化太陽能電池與超級電容之整合型元件之研究〔碩士論文,國立虎尾科技大學〕。華藝線上圖書館。https://www.airitilibrary.com/Article/Detail?DocID=U0028-0908201719093200

延伸閱讀