透過您的圖書館登入
IP:3.147.104.120
  • 學位論文

無線充電之一次側快充控制研究

Study On Primary Side Controller For Fast Wireless Charger Design

指導教授 : 董蘭榮

摘要


本論文提出一種無線充電之一次側變頻控制方法,發射端可以不與接收端通訊的條件下進行控制,進行接收端的快速充電。利用一次側傳輸端操作在諧振頻率點,能產生較大的時變電流而增強線圈的磁場進行能量傳遞。控制方法僅需透過一次側線圈電流檢測和控制一次側逆變器的頻率來找出電路諧振頻率,改變頻率的方法基於擾動觀察法(Perturb & Observe algorithms, P&O)概念,擾動頻率去追蹤一次側電感最大電流,經過不斷的擾動和電流差值比較,找出系統諧振頻率,並透過一個比例因子(K)去決定頻率變動的階數,縮短一次側尋找諧振頻率的時間,實現對二次側超級電容快速充電之目的,且針對線圈偏移時,諧振頻率改變,本論文提出的頻率控制也能快速追蹤到新的諧振頻率點上,並透過實驗,變動頻率步階追蹤時間比固定步階在追蹤時間上改善51%。

並列摘要


In this thesis, we have proposes a primary-side variable frequency control method for wireless charging. We can control the transmitter without receiving communication from the receiver and perform fast charging at the receiver. The primary-side transmission side operation at the resonant frequency point, a large time-varying current can be generated to enhance the magnetic field of the coil for energy transfer. The control method only needs to detect the resonant frequency of the circuit by detecting the primary coil current and controlling the frequency of the primary inverter. The method of variable the frequency is based on Perturb & Observe algorithms (P&O) concept, the perturb frequency is used to track the primary side maximum current, through continuous perturb and current difference comparison, to for system resonant frequency, and through a proportional factor (K) to determine the frequency step size, reduce the primary side to find the resonant frequency of time, to achieve the secondary side rapid charging of the super capacitor. For coil misalignment, the resonant frequency changes and the frequency control can also quickly track the new resonant frequency point. Comparing with the fixed-step tracking control, the proposed approach can improve the tracking speed by the factor of 51%.

參考文獻


[1] Le-Wei Li, J.: Wireless power transmission: state-of-the-arts in technologies and potential applications (Invited Paper). In: Proceedings of the Asia-Pacific Microwave Conference 2011, pp. 86–89 (2011).
[2] M. Ibrahim, L. Bernard, L. Pichon, E. Laboure, A. Razek, O. Cayol, D. Ladas, and J.Irving, “Inductive charger for electric vehicle: Advanced modeling and interoperability analysis,” IEEE Trans. Power Electron., 2016, to be published.
[3] L. Olvitz, D. Vinko, T. Svedek, "Wireless power transfer for mobile phone charging device", Proc. IEEE 35th Int. MIPRO Conven., pp. 141-145, 2012.
[4] P. Si, A. P. Hu, J. W. Hsu, M. Chiang, Y. Wang, S. Malpas, D. Budgett, "Wireless power supply for implantable biomedical device based on primary input voltage regulation", Proc. 2nd IEEE Conf. Industrial Electron. Appl., pp. 235-239, 2007-May
[5] Z. Yiming, Z. Zhengming, C. Kainan, "Frequency decrease analysis of resonant wireless power transfer", IEEE Trans. Power Electron., vol. 29, no. 3, pp. 1058-1063, Mar. 2014.

延伸閱讀