透過您的圖書館登入
IP:3.22.61.246
  • 學位論文

電動車對節點無線充電之電量最大化研究

Study on Maximum Charging State for Vehicle-to-node Wireless Charger

指導教授 : 董蘭榮

摘要


本論文所提出電動車對節點無線充電之電量最大化研究,透過移動式的電動車來巡迴,替分布四周的感測節點進行無線充電補充能源。使用非接觸式的磁感應式無線電力傳輸架構,能不須通訊即對節點完成充電。利用傳輸端操作在諧振頻率點能產生很大的電流及很強的磁場進行能量傳遞,繼而產生很大的電流輸出給接收端負載。控制方法僅需檢測傳輸端線圈電流和改變頻率操作點,去追蹤最大的諧振電流,不管線圈在任何相對位置之下,都可以對接收端負載實現快速充電之目的。改變頻率的方式基於擾動觀察法(Perturb & Observe algorithms, P&O)的概念,透過一個比例因子(S)去決定頻率變動的階數,縮短尋找諧振頻率點的時間。與固定變動階數控制相比,該方法可以將追踪速度提高至31%,能在最短的時間快速充電讓超級電容的電壓提升且能在電動車離開後,節點上的超級電容電壓提高放電率至15.6%,也因此超級電容能供給節點的電量也能越大。

並列摘要


In this thesis, we have proposed a Study on Maximum Charging State for Vehicle-to-node Wireless Charger. We can through mobile vehicles to charge sensor nodes in a sensor networks. Using a non-contact magnetic inductive wireless power transmission architecture, we can control the transmitter without receiving communication. The transmission side operation at the resonant frequency point, a large current can be generated to enhance the magnetic field of the coil for energy transfer, which in turn generates a large current output to the receiving load. The control method only needs to detect the primary coil current and controlling the frequency of the primary inverter. For coil misalignment, can achieve the secondary side rapid charging of the super capacitor. The method of variable the frequency is based on Perturb & Observe algorithms (P&O) concept. The scale factor (S) is used to determine the order of the frequency variation. Comparing with the fixed-step tracking control, the proposed approach can improve the tracking speed by the factor of 31% and increasing the super capacitor discharge rate to 15.6%, therefore, increase the power that the supercapacitor can provide to the node.

參考文獻


[1] A. Kouche, "Towards a wireless sensor network platform for the internet of things: Sprouts wsn platform," in IEEE International Conference on Communications (ICC), 2012, pp. 632-636.
[2] W. Liang, X. Ren, X. Jia, and X. Xu. Monitoring quality maximization through fair rate allocation in harvesting sensor networks. IEEE Transactions on Parallel and Distributed Systems, Vol. 24(9), pp. 1827-1840, 2013.
[3] X. Jiang, J. Polastre, D. Culler, "Perpetual environmentally powered sensor networks", Proc. 4th International Symposium on Information Processing in Sensor Networks (IPSN), pp. 463-468, 2005-Apr.
[4] B. Tong, G. Wang, W. Zhang, C. Wang, "Node reclamation and replacement for long-lived sensor networks", SECON '09, June 2009.
[5] J. W. Kimball, B. T. Kuhn, R. S. Balog, "A system design approach for unattended solar energy harvesting supply", IEEE Trans. Power Electron., vol. 24, no. 2, pp. 952-962, Apr. 2009.

延伸閱讀