透過您的圖書館登入
IP:13.59.96.255
  • 學位論文

交流耦合平衡增益之腦波量測系統

Design and Implementation of the AC-coupled EEG Measurement System

指導教授 : 徐國鎧
若您是本文的作者,可授權文章由華藝線上圖書館中協助推廣。

摘要


大腦是我們人體重要的思想中樞,裡頭蘊藏許多未知的訊息,而腦部神經活動的綜合變化所產生之電訊號就稱作腦電波。 腦波訊號非常微弱,一般在大腦皮層振幅約為10mV,再經過頭顱等衰減後,其振幅更是小到約0.5~100uV,而且非常容易受到外來因素,如量測環境、周邊電器用品以及人體本身生理訊號的干擾所影響,因此在量測上十分不易。 一般使用腦波擷取電路,容易因為電路元件的誤差或是老化使其濾波效果不盡理想,尤其是針對電源60Hz干擾所設計之陷波濾波器,一旦元件誤差過大其衰減效果就大打折扣。 本研究設計一個雙通道的腦波擷取電路,其中包含交流耦合式前端處理電路,類比放大電路、濾波電路以及陷波濾波器,具有低雜訊、低失真及高增益等特性,對於電路元件誤差所造成之截止頻率的偏移,也可作微調來回到原先的理想設計值,並經由電路模擬與實際量測比較中得到驗證,可有效量得腦波訊號。另外搭配9V電池供應電源,使其攜帶上更方便,並且降低電源干擾。

並列摘要


As a thinking center, the cerebrum plays an important part for human and it’s also abundant with many unknown information. Besides, The signal, the compositive changes produced by cerebration, are called electroencephalogram (EEG). On average, the signal of the EEG is very weak and it’s amplitude is around 10 mV under the cerebrum cortex. After flowing through the skull, the amplitude is reduced to 0.5~100uV. Moreover, it’s easily interfered by external factors such as the environment, the electrical appliance and the physical signal of the body. Hence, it’s extremely hard to measure. Due to the error or the aging of components, EEG access to circuits always leads to unideal filter results. Once the aging of components is overgreat, the decreasing effects will be diminished, notch filter designed by the power 60Hz interference, especially. The study proposes a two-channel EEG measurement, including ac-coupled front-end, amplifier, three order low pass filter and notch filter that possess low noise, low distortion and high gain. With regard to the departure of cut-off frequency cause by the aging, which can be revised to original ideal design by fine-tuning. By the way to compare simulation and measurement, we can get the verification and measure EEG signals efficiently. Conjugation with battery, it’s much easy to carry and decrease power interference.

參考文獻


[21] 林能毅,“十六通道腦電波訊號擷取晶片之研製”,中原大學
[22] 黃名斌,“USB介面之模組化腦波記錄儀”,中原大學醫學工
[1] G. H. Hamstra, A. Peper and C. A. Grimbergen, “Low-Power,Low-Noise Instrumentation Amplifier for Physiological Signals”,Med. & Biol. Eng, Vol. 22, pp. 272-274, May 1984.
[2] H. W. Smit, K. Verton, and C. A. Grimbergen, “A Low-Cost Multi-channel Preamplifier for Physiological Signals”, IEEE Trans.Biomed.Eng., Vol. BME-34, pp. 307–310, Apr. 1987.
[3] A. C. Metting Van Rijn, A. Peper, and C. A Grimbergen, “Amplifiers for Bioelectric Events: A Design With A Minimal Number of Parts”,Med. Bio. Eng. Comput., Vol. 32, pp. 305–310, May 1994.

被引用紀錄


王耀陞(2016)。應用希爾伯特-黃轉換分析腦波〔碩士論文,淡江大學〕。華藝線上圖書館。https://doi.org/10.6846/TKU.2016.00903
Chen, M. H. (2015). 設計 腦波量測系統之類比前端電路 [master's thesis, Feng Chia University]. Airiti Library. https://doi.org/10.6341/fcu.M0253720
李迎曦 (2015). 類比前端生理訊號量測電路設計 [master's thesis, Feng Chia University]. Airiti Library. https://doi.org/10.6341/fcu.M0227284
陳昭憲(2008)。適用於腦波人機介面之腦波量測系統〔碩士論文,國立中央大學〕。華藝線上圖書館。https://www.airitilibrary.com/Article/Detail?DocID=U0031-0207200917355280
梁家銘(2011)。穩態視覺誘發電位於大腦人機介面之刺激頻率及責任週期設計〔碩士論文,國立中央大學〕。華藝線上圖書館。https://www.airitilibrary.com/Article/Detail?DocID=U0031-1903201314424698

延伸閱讀