透過您的圖書館登入
IP:3.135.216.174
  • 學位論文

界面活性劑的濕潤能力對紡絲上油及纖維物性的影響

Effect of surface treatment and wetting behavior on fiber surface and resulted yarn property.

指導教授 : 陳登科
若您是本文的作者,可授權文章由華藝線上圖書館中協助推廣。

摘要


本文藉由在紡絲油劑的主配方中添加了不同種類的界面活性劑來製備一系列具有不同濕潤性(wetting ability)的紡絲油劑乳化液 (emulsion),然後上油在聚酯紡絲紗線上,實驗發現,油劑乳化液之動態表面張力(dynamic surface tension)及其在聚酯薄膜上之動態接觸角(dynamic contact angle)會分別對聚酯紡絲紗線的質量均勻度變異(UCV%)及紗線延伸 60% 之拉力(BE60)造成明顯的影響,並同時對紡絲上油均勻性變異(Rossa SD)產生明顯的關聯性。實驗結果顯示,紗線的 BE60 會隨著油劑之動態接觸角的降低(高濕潤性)及/或紡絲上油均勻性變異(Rossa SD)的增加而降低,並發現油劑會滲入纖維內部然後造成 BE60 拉伸力的降低(亦即紗線被塑化了)。經比較 Rossa SD 之後發現,油劑的動態接觸角才是造成 BE60 拉伸力下降的主因。另外,在量測經過上油點之後的不同距離之 Rossa SD 發現,在距上油點之後的120 公分以內,紗線的 Rossa SD 會隨著經過上油點之後的距離增加而降低。研究又發現紗線的質量均勻度變異(UCV%)將隨著 Rossa SD 及/或油劑動態表面張力差值(汽泡頻率 6Hz 與 1Hz 的動態表面張力差值,Δγd)的增加而增加,但是當油劑的 Δγd 增加到1.7 以上時,會發生油劑飛濺(造成油劑萃取量降低),此後紗線的質量均勻度將不再繼續變得更差。經比較紗線的摩擦係數及其表面介電性質之後發現,油劑的 Δγd 才是影響紗線的質量均勻度變異的主因。 本文另外也探討藉由聚酯與二氧化鈦(TiO2)奈米微粒之參混(blending)來製造出具有含 TiO2 之功能性聚酯及纖維。實驗發現,隨著纖維之 TiO2 含量的增加,浮現在纖維表面之 TiO2 聚集顆粒會更明顯,此將造成纖維表面之不平整及紗線之摩擦接觸面積下降,並因而導致紗線摩擦力的降低。由 ESCA 及 SEM/EDX 實驗結果得知,纖維之 TiO2 會比較喜歡分布在纖維/空氣的界面。另外,由實驗得知摩擦力愈小之紗線所對應之織物的摩擦力也將愈低,這代表可藉由 TiO2 含量的調控來製造出不同摩擦力範圍的纖維及其織物,並因此具有一些在紡織工業之潛在應用機會。

關鍵字

濕潤行為 表面處理 纖維

並列摘要


Spin finishes with various wetting properties were prepared by incorporating different wetting agents into the formulated basic spin finish master batches. They were then applied to PET high-speed melt spinning yarns. Variations of the tensile strength at 60% elongation (BE60) and the variation in mass per unit length along the yarn (yarn evenness) of the yarns were evaluated together with the corresponding dynamic contact angles of the PET film、dynamic surface tension of the spin finish emulsion and on-line spin finish distribution (Rossa SD) on the PET yarn. A decreased BE60 was found when the dynamic contact angles decreased. This indicates that spin finishes had diffused into the fiber core and, therefore, reduced the fiber strength. Comparing with the spin finish distribution, we concluded that the dynamic contact angle was the dominant factor for the plasticization of the PET yarn. The wetting behavior of the fiber surface was evaluated by measuring the on-line spin finish distribution at various distances from the spin finish applicator. It showed that the spin finish continued to spread rapidly on the yarn surface at distances smaller than 120cm. The yarn evenness was decreased, with a poor on-line spin finish distribution, and with an increased difference between the dynamic surface tensions, Δγd, for bubbling rates of 1Hz (γ1Hz) and 6Hz (γ6Hz). The on-line spin finish distribution increases with Δγd to a Δγd value of 1.7 dyne/cm. Thereafter, further increasing Δγd caused spin finish splashing from the yarn, reducing the extraction weight of the spin finish from the PET yarn. However, yarn evenness initially decreased as Δγd increased, but leveled off when Δγd exceeded 1.7 dyne/cm. Comparing with the surface friction and the surface dielectric property, we concluded that the dynamic surface tension of the spin finish emulsion played a dominant effect on the PET high-speed melt spinning. In addition, poly (ethylene terephthalate) (PET) was blended with different amount of TiO2 nanoparticle, and then spun into fibers at different diameters. The TiO2 nanoparticles showed aggregations on the fiber surface. The aggregates became larger as the content of TiO2 nanoparticle increased and/or the diameter of spun fiber decreased, which led to an increased C1s/O1s ratio calculated from the ESCA survey scan spectra. Results also showed that the TiO2 nanoparticles showed a preference to distribute on the fiber surface, which caused unevenness of the fiber surface and led to a greatly reduced frictional force on the fiber surface. By the way, based on different amount of TiO2, a broad range of yarn friction could be made, which would provide promise to potential performance in fiber industry.

並列關鍵字

Surface treatment Fiber Wettiing behavior

參考文獻


[2] J. P. Redston, W. F. Bernholz and C. Schlatter, Chemicals Used as Spin Finishes for Man-Made Fibers, Textile Research Journal, 43, 325 (1973)
[3] J. P. Redston, W. F. Bernholz and R.C. Nahta,Emulsifier Choice in Design of Finishes for Man-Made Fibers, J. Amer. Oil Chem. Soc., 48, 344 (1971)
[5] P. E. Slade, Handbook of Fiber Finish Technology, Marcel Dekker, Inc., NY, 1998.
[6] T. Fujimoto, New Introduction to Surface Active Agents, Sanyo Chemical Industries Ltd. Publication, Japan, 1985, pp. 156-174.
[8] T. Crutcher, K. R. Smith, J. E. Sauer, J.W. Perine, J. Am. Oil Chem. Soc. 69 (1992) 682.

延伸閱讀