透過您的圖書館登入
IP:18.118.12.222
  • 學位論文

以磁場模擬法設計磁鐵排列改善濺鍍機台之填洞能力

Gap filling capability improvement via magnetic field simulation assisted on long throw sputtering PVD of magnet designs and arrangements

指導教授 : 利定東
若您是本文的作者,可授權文章由華藝線上圖書館中協助推廣。

摘要


此研究利用簡單的方法在固定的深寬比中改進填洞效果,不但成本低廉而且有效改善階梯覆蓋率和增加沉積速率,在未來可應用於3DIC或是半導體產業上效果顯著。 利用有限體積法模擬PVD磁場的磁場分布,採用長距離沉積法加入固定高度的連接器和側邊磁鐵,在加入側邊磁鐵可以增加電子行走距離,有效增加與離子間碰撞機會,側邊磁鐵由三個一組共44組,磁鐵強度約為5500高斯,對於長距離的沉積製程中 ,填洞的腔體增加高度120mm,腔體旁邊圍繞著44組磁鐵。 側邊磁鐵極性跟上方磁鐵中最外圈磁鐵同向,以達到將磁力線拘束在腔體中心的效果。經由此設計,可以明顯改善階梯覆蓋率45%以及增加40%的沉積速率,此研究可應用於3DIC。

並列摘要


This study used Finite Volume Method to simulate the magnetic profile of PVD (physical vapor deposition) chamber.. From this study, it can be applied to different kinds of target designs. The side magnets consist of a total of 44 sets for one supporter around the chamber adaptor. Each set has three magnets. Each magnet with the magnetic field strength is 5,500 Gauss. For this long throw PVD, adaptor of gap filling chamber has 120 mm height and the 44 sets of magnets are around to adaptor. The polarity of side magnets is the same as the top magnets of the chamber. These magnets can provide very effective and beneficial to the increase of electron mobility and collision frequency with ions. It shows a significant improvement of step coverage on both side walls up to 45%. The deposition rate increases 40%. This study uses a simple method to apply to 3DIC gap filling capability for an increase of aspect (AR). The improvement from this long throw sputtering PVD with side magnets design around the adaptor can provide not only for low cost target design but also provide a very effective gap filling capability with higher deposition rate for 3DIC application

並列關鍵字

deposition rate magnetic field aspect ratio 3DIC PVD

參考文獻


[1] Jang, D. M. ; Ryu, C.; Lee, K. Y. ; Cho, B. H.; Kim, J. ; Oh, T. S.; Lee, W. J. ; Yu, J. “Development and evaluation of 3-D SiP with vertically interconnected through silicon vias (TSV)“, Electronic Components and Technology Conference 57th, Nevada,USA , pp. 847-852, May 2007,
[2] K. Kondo, T. Yonezawa, D. Mikami, T. Okubo, Y. Taguchi, K. Takahashi, and D. P. Barkey, “High-aspect-ratio copper-via-filling forthree -dimensional chip stacking,” J. Electrochem. Soc. , vol 152, pp. 173–177 , 2005.
[3] R. Beica, C. Sharbono, T. Ritzdorf, “Through Silicon Via Copper electrodeposition for 3D Integration” Proc. Electronic Components and Technology Conference, Florida, USA , pp. 577-583, May 2008.
[4] O. Luhna,, C. Van Hoof , W. Ruythooren, J.-P. Celis, “Barrier and seed layer coverage in 3D structures with different aspect ratios using sputtering and ALD processes” Microelectronic Engineering ,vol 85, pp.1947–1951,2008.
[8] H. Yonemuraa, S. Natsukob, J. Suyamab, S. Yamadaa, “Orientation and organization of gold nanorods on a substrate using a strong magnetic field: Effect of aspect ratio” J. Photochemistry and Photobiology , vol 220, pp. 179–187, 2011.

被引用紀錄


陳詩傑(2017)。以金屬有機化學氣相沉積法製備氮化鎵/氮化銦鎵多層量子井之非穩態模型研究〔碩士論文,中原大學〕。華藝線上圖書館。https://doi.org/10.6840/cycu201700493
陳俊榮(2015)。以金屬有機化學氣相沉積製備氮化鎵/氮化銦/氮化銦鎵之製程模擬與反應動力學研究〔碩士論文,中原大學〕。華藝線上圖書館。https://doi.org/10.6840/cycu201500665
盧勁甫(2014)。高頻RF感應加熱器應用於MOCVD承載盤之均溫性探討分析〔碩士論文,國立中央大學〕。華藝線上圖書館。https://www.airitilibrary.com/Article/Detail?DocID=U0031-0412201511590250
邱顯智(2015)。以數值分析法優化MOCVD高溫反應腔體之加熱系統暨實作驗證〔碩士論文,國立中央大學〕。華藝線上圖書館。https://www.airitilibrary.com/Article/Detail?DocID=U0031-0412201512090444

延伸閱讀