透過您的圖書館登入
IP:18.118.120.109
  • 學位論文

以化學浴沉積法製備不同結構氧化鋅光電極薄膜之研究

The fabrication of Zinc Oxide photoelectrode thin film with different structures by chemical bath deposition

指導教授 : 洪勵吾
若您是本文的作者,可授權文章由華藝線上圖書館中協助推廣。

摘要


本研究利用化學水浴沉積法於ITO導電玻璃上製備氧化鋅薄膜,應用於光電化學產氫系統中做為光電極;藉由改變錯合劑種類與濃度,製備出不同形貌的氧化鋅薄膜,比較各種形貌之薄膜光吸收及光電特性表現後,接著進一步討論沉積溫度、沉積層數及熱處理溫度等製程參數對薄膜所造成的影響,同時也逐步提升薄膜之光電特性表現。 實驗中發現,不同錯合劑種類與濃度會生成不同的氧化鋅結晶形貌,當錯合劑為氨水,濃度0.4M及0.8M為顆粒狀結構,而濃度1.2M及1.6M則為花瓣狀結構;錯合劑改為六亞甲基四胺皆呈現六角柱狀結構,而錯合劑使用三乙醇胺則為顆粒狀結構,比較後發現錯合劑為濃度4%之三乙醇胺所製備出的顆粒狀薄膜有較佳的光吸收及光電特性。接著逐步改變鍍浴溫度、鍍膜層數與熱處理溫度等參數,實驗結果顯示,在鍍浴溫度50℃、鍍膜層數5層、熱處理溫度400℃時有較佳的光暗電流密度差值,相較於其他類似製程之文獻已獲得不錯之提升,無施加偏壓下其值可達0.32mA⁄cm^2 ,且相對於硫化物系列材料而言,本研究之氧化鋅光電極有較佳的長時間穩定性。

並列摘要


In this study, zinc oxide thin films are deposited on ITO conductive glass substrates with chemical bath deposition (CBD) method. It can be used as the photoelectrode in photoelectrochemical water-splitting to produce hydrogen. By changing different types and concentrations of complexing agent to form zinc oxide thin film, the various crystal structures are obtained, including particles, hexagonal cylinder, and flower-like structures. It is found that using 4% triethanolamine (TEA) as complexing agent, the particles structure can has better optical and photoelectrochemical properties, if 4% triethanolamine (TEA) is used as complexing agent The impact of temperature of bath, number of deposition layers, and temperature of annealing on the properties of films are then be investigated. Results showed that current density difference between light and dark conditions is largest when the parameters are as following: 50℃ of bath temperature, 5 deposition layers, 400℃ of annealing temperature. The current density difference between light and dark conditions is 0.322mA⁄cm^2 without applying bias voltage. Films made in this thesis have better performance than those made in similar process before.

參考文獻


[56] W. C. Hung, T. K. Sheu, M. A. Wang, S. W. Kou, and C. Su, “ITO Thin Film : from development and application to preparation and characterization,” The Chinese Chem. Soc., Vol. 63, pp.409-418, (2005).
[7] A. Fujishima, and K. Honda, “Electrochemical photolysis of water at a semiconductor electrode,” Nature, Vol. 238, Number 5358,pp. 37-38, (1972).
[8] A. Kudo, and Y. Miseki, “Heterogeneous photocatalyst materials for water splitting,” Chemical Society Reviews, Vol. 38, pp.253-278, (2009).
[9] T. Bak, J. Nowotny, M. Rekas, and C. C. Sorrell, “Photoelectrochemical hydrogen generation from water using solar energy. Materials related aspects,” International Journal of Hydrogen Energy, Vol. 27, pp.991-1022, (2002).
[10] T. P. Niesen, and M. R. D. Guire, “Review:deposition of ceramic thin films at low temperatures from aqueous solutions,” Solid State Ionics, Vol. 151, pp. 61-68, (2002).

延伸閱讀