透過您的圖書館登入
IP:18.224.63.87
  • 學位論文

CIGS薄膜太陽能電池奈米週期性結構之製作與分析

The Fabrication of Periodical Nanostructures on CIGS Thin Film Solar Cell

指導教授 : 王祥辰
若您是本文的作者,可授權文章由華藝線上圖書館中協助推廣。

摘要


本論文內容為利用雷射干涉微影技術(laser interference lithography)與乾蝕刻圖形轉移技術分別製作四方形排列週期性孔洞奈米結構與六方形排列週期性孔洞奈米結構於銅銦鎵硒薄膜上,四方形排列週期性孔洞大小約300nm,週期約550nm,深度約300nm,而六方形排列週期性孔洞大小約350nm,週期約650nm,深度約300nm。為了製作品質良好的光阻(SU-8 2000.5)母膜,我們利用濕蝕刻的特性解決CIGS表面的不平整,且已經可成功製作出大面積圖形在光阻母膜上,並成功轉移圖形於CIGS薄膜的表面。 另外我們也成功量出薄膜反射率的變化,拋光表面CIGS的反射率為62.05%,原始粗化試片的反射率為16%,六方形排列週期性孔洞奈米結構的反射率為6.73%,四方形孔洞奈米結構的反射率為4.31%,總反射率六方形排列奈米結構下降57.94%,四方形排列奈米孔洞結構下降73.06%。 我們已成功做出將奈米結構製作於銅銦鎵硒薄膜上,隨著不同的蝕刻秒數做變化,並找到最佳化的參數,實現出具有大面積和小週期的奈米結構於CIGS薄膜。

並列摘要


In this study, the laser interference lithography and wet etching process on CIGS thin film has been discussed. We used laser interference lithography technique and dry etching to transfer the square and the hexagon periodical pattern nanostructures on Copper Indium Gallium Selenide(CIGS) thin films. For square, the period of nanostructures was about 550nm, the width is about 300nm and the depth is about 300nm. For hexagon, the period of nanostructures was about 650nm, the width is about 350nm and the depth was about 300nm. In order to fabricate a superior quality mask of photoresist (SU-8 2000.5) on the CIGS thin film by laser interference lithography, we use wet etching to polish our CIGS surface. By doing so, we can solve the problem of roughness on CIGS surface. In addition, we also measured the reflectance of different nanostructures surface on CIGS thin films. The reflectance of polished, original, hexagon and square CIGS thin films surface are 62.05%, 16%, 6.73%, and 4.31%, respectively. As oppose to original CIGS thin films surface, the total reflectance of hexagon and square CIGS thin film surface was decrease to 57.94% and 73.06%, respectively. The fabrication of nanostructures on CIGS thin film has been discussed, and we find out the optimal parameters in etching time, then we produced the large area and small period nanostructures on CIGS thin film.

參考文獻


[2] B. J. Stanbery, “Copper Indium Selenides and Related Materials for Photovoltaic Devices,” Crit.Rev. Solid State 27, 73–117( 2002).
[4] P. Jackson, D. Hariskos, E. Lotter, S. Paetel, R. Wuerz, R. Menner, W. Wischmann, and M. Powalla, “New world record efficiency for Cu(In,Ga)Se2 thin-film solar cells beyond 20%,” Prog. Photovolt: Res. Appl. 19, 894-897(2011).
[5] K. Otte, L. Makhova, A. Braun and I. Konovalov, “Flexible Cu(In,Ga)Se2 thin-film solar cells for space application,” Thin Solid Films, 613-622(2006).
[8] U. W. Paetzold, E. Moulin, D. Michaelis, W. Böttler, C. Wächter, “Plasmonic reflection grating back contacts for microcrystalline silicon solar Cells”, Appl.Phys.Lett, 99(2011).
[9] A. Basch, F. J. Beck, T. Söderström, S. Varlamov, and K. R. Catchpole, ”Combined plasmonic and dielectric rear reflectors for enhanced photocurrent in solar cells,” Appl. Phys. Lett 100(2012).

延伸閱讀