透過您的圖書館登入
IP:18.222.97.149
  • 學位論文

60 GHz高清影像傳輸系統及其CMOS收發晶片之研製

60 GHz High-Definition Video Transmission System and It’s Integrated Circuits Design in CMOS 90 nm Technology

指導教授 : 蔡作敏
若您是本文的作者,可授權文章由華藝線上圖書館中協助推廣。

摘要


本論文使用兩種方式來實現60 GHz 高清影像傳輸,其一用Hittite的砷化鎵晶片貼附於PCB板上組成60 GHz 收發機系統,其二使用CMOS 90 nm的製程將收發機的各級元件整合於一顆晶片上並貼附於GIPD上,來達成60 GHz 高清影像傳輸。原先系統發射端與接收端的本地訊號分別用鎖相迴路提供,但由於兩端鎖相迴路所產生的訊號頻率不相同,造成影像訊號載波於頻率為兩端鎖相迴路訊號頻率差值的弦波上,此現象造成影像訊號無法顯示於螢幕上。這裡提出解決方式,鎖相迴路系統輸出7.2 GHz的雙端訊號,其一直接提供給系統發射端作為本地訊號,另一端則透過天線傳輸給注入鎖定振盪器,最後由注入鎖定振盪器產生出頻率與鎖相迴路完全相同的訊號作為接收端的本地訊號。上述方式便能夠有效解決本地訊號頻率不同所造成的問題,高清影像訊號即可順利傳輸。接著使用CMOS 90 nm的製程將收發機的各級元件整合於一顆晶片以降低元件間連接的損耗並縮小系統的面積。晶片量測結果發射端有12 dB 的轉換增益,最大輸出功率為5 dBm,接收端有 10 dB的轉換增益,接收端與發射端可使用頻寬皆在5 GHz 以上。最後將晶片與GIPD整合作為將來影像傳輸使用。60 GHz 高清影像傳輸系統有足夠的頻寬對未經壓縮的影像訊號作即時傳輸,這將能夠使我們的生活更為便利。

並列摘要


In the thesis, we use two different way to realize 60 GHz high-definition video transmission. One is using Hittite GaAs IC flip-chip on PCB to construct transceiver system. Another one is integrating each components into transceiver system by TSMC CNOS 90 nm process. And the CNOS 90 nm IC will flip-chip on GIPD. First phase-locked loop systems provide LO signal to receiver and transmitter individually. Because of the LO signal frequencies which provided by phase-locked loop systems are inconsistent, the video signals are carried by a sine wave. The sine wave frequency is the subtraction between the LO signal frequencies. This phenomenon causes that the video signals are not displayed on the screen. Here propose a solution that there are double-ended outputs in phase-locked loop system. One way just provide LO signal to transmitter. The other way go through antenna transmitting to the injection-locked VCO. Then the injection-locked VCO will oscillate a same frequency signal to receiver. This solution solve the problem that receiver and transmitter have LO signals of different frequencies effectively. Then integrating each components into transceiver system can reduce the losses between two components and narrow size of chip.We realize the IC by TSMC CNOS 90 nm process. Here are the measurement results. Transmitter measured conversion gain of 12 dB, and the maximum output power is 5 dBm. Receiver measured conversion gain of 10 dB. Both of receiver and transmitter measured IF bandwidth up to 5 GHz. Finally the 90 nm IC will flip-chip on GIPD to accomplish 60 GHz high-definition video transmission. 60 GHz high-definition video transmission system has enough bamdwidth transmitting uncompressed video signals. This design will improve our life.

並列關鍵字

60 GHz transmitter RF IC

參考文獻


[1] T. Yao, M.Q. Gordon, and K. K. W. Tang, “Algorithmic design of CMOSLNAs and PAs for 60-GHz radio,” IEEE J. Solid-State Circuits, vol. 42, no.5, pp. 1044–1057, May 2007.
[3] S. Sarkar, P. Sen, S. Pinel, C.H. Lee, and J. Laskar, "Si-based 60GHz 2X subharmonic mixer for multi-gigabit wireless personal area network application," in IEEE MTT-S Int. Microw. Symp. Dig., June 2006, pp.1830–1833.
[5] S. Sarkar, P. Sen, B. Perumana, D. Yeh, D. Dawn, S. Pinel, and J. Laskar, "60 GHz single-chip 90nm CMOS radio with integrated signal processor," in IEEE MTT-S Int. Microw. Symp. Dig., June 2008, pp.1167–1170.
[6] J.J. Lee, D.Y. Jung, K.C. Eun; S.J. Cho, C.S. Park, "A 60GHz low power CMOS demodulator for multi-gigabit wireless receiver systems," in Proc. Asia-Pacific Microw. Conf., Dec. 2007, pp. 11–14.
[8] E. Cohen, A. Israel, O. Degani, and D. Ritter, "High sensitivity detector with robust PVT performance for 60GHz BiST phased array systems in 90nm CMOS," in IEEE 12th Topical Meeting Silicon Monolithic Integrated Circuits in RF Systems (SiRF), Jan. 2012, pp. 211–214.

延伸閱讀