透過您的圖書館登入
IP:3.135.219.78
  • 學位論文

以流體方法合成偶氮苯化合物:有關芳香基偶氮鹽中間物的穩定性研究

Flow Synthesis of Azobenzenes: On Stability of the Aryldiazonium Salts

指導教授 : 曾炳墝 劉陵崗
若您是本文的作者,可授權文章由華藝線上圖書館中協助推廣。

摘要


摘要 重氮化反應(diazotization reaction)和偶氮偶聯反應(azo-coupling reaction)是用來製備各種重要的偶氮染料(azo-dye)分子化合物和其他中間物的化學製程。重氮化反應所產生出來的中間體重氮鹽類化合物,在5℃以上時,很不穩定,甚至可能引發爆炸。所以,在批次式(batch reaction)反應中,都要求高規格的安全措施。我們認為在反應系統上需要一個更安全的製程設計。在一個微流體反應系統中(microfluidic reaction),反應點上放熱量都很微量,容易移除,不會累積而形成大量放熱,進而引起爆炸。因此,在本研究中我們使用微流反應系統,來合成一系列的偶氮苯染料化合物。在連續性流體反應的過程中,中間產物重氮鹽類(diazonium salt)在室溫條件下,隨時產生,隨時被引入下一步驟的偶氮偶聯反應中,比起完全在圓底瓶中反應更為安全並且有更好的反應性。因此,我們使用了以苯氨為基礎,含有其他官能基的起始物,來合成一系列的偶氮苯染料,並且優化在流體反應器的重氮化反應,也對這些偶氮苯化合物的性質加以探討。 關鍵字:偶氮苯

關鍵字

偶氮苯

並列摘要


Abstract Diazotization reaction and azo-coupling reaction are chemical processes that lead to industrially important azo dyes and other intermediates. The formed intermediate diazonium salts are unstable above 5oC and there is a high possibility on explosion. So in the batch processes, the diazotization reaction should be carried out with high precautions. A safe and high capacity process is needed for diazotization and azo-coupling reaction. In the microfluidic reactions, the release of reaction heat is very minimum, which is easy to remove and does not accumulate. The probability of explosion is lowered consequently. Therefore it was our goal to study the employment of microfluidic reactors to synthesize the above mentioned azobenzenes. Different from the stepwise nature in batch preparation using round-bottomed flasks, the continuous nature of flow reactions produces the intermediate diazonium salts at room temperature and passes the intermediate directly and continuously to the next step towards azo-coupling reaction. It is a safer and better procedure in laboratory and in industry. Herein a series of azobenzenes were prepared from aniline derivatives using the continuous flow method and the property and the synthesis of these azobenzenes were discussed. Keyword: Azobenzene

並列關鍵字

Azobenzen

參考文獻


1. Terry, S. C.; Jerman, J. H.; Angel, J. B. IEEE Trans. Electron Devices 1979, 26, 1880-1886.
3. Jahnisch, K.;Hessel, V.; Lowe, H.; Baerns, M. Angew. Chem. Int. Ed. 2004, 43, 406-446.
4. Yoshida, J. Flash chemistry: fast chemical synthesis in flow microreactros. In processing of 14th International Conference on Miniaturized Systems for Chemistry and Life Sciences. 2010, pp 758-760.
7. Whitesides, G. M. Nature 2006, 442, 368-373.
8. Schwalbe, T.; Autze, V.; Hohmann, M.; Stirner, W. Org. Process Res. Dev.2004, 8, 440-454.

延伸閱讀