透過您的圖書館登入
IP:3.131.13.194
  • 學位論文

一種含杏鮑菇廢棄物萃取物及植物乳酸菌之益合素飼料改善白蝦成長、腸道微生物菌相及健康

A synbiotic prepared from king oyster mushroom by-product and lactic acid bacterium improves the growth and health of white shrimp, Litopenaeus vannamei

指導教授 : 劉俊宏 胡紹揚

摘要


本研究評估了含有杏鮑菇副產品萃取物 (KOME) 和Lactobacillus plantarum 7-40 的益合素飼料對南美白對蝦生長、免疫反應和腸道菌群的影響。 KOME 顯著刺激了益生菌的生長,但不刺激弧菌病原體的生長,包括Vibrio alginolyticus, V. parahaemolyticus, 和V. harveyi。配製四種飼料,包括魚粉基礎飼料(control)、添加KOME(5 g kg-1)的基礎飼料(ME)、添加益生菌的基礎飼料(1×108 CFU kg-1)(LP),以及添加 KOME (5 g kg-1) 和益生菌 (1×108 CFU kg-1) (SYN) 的基礎飼料。攝食 ME、LP 和 SYN 飼料的白蝦存活率顯著高於對照組。在SYN組中,蝦的增重和最終總重明顯高於對照組。 SYN 組的蝦腸中的乳酸菌數量顯著增加,而 ME 組的弧菌數量顯著高於對照組。分析總體基因體檢測到 13 個門、21 個綱、51 個目、74 個科和 104 個屬。雖然沒有發現顯著差異,但SYN組表現出比對照組更高的豐富度、均勻度和辛普森多樣性指數。文氏圖數據顯示,對照組和 SYN 組共享 57 個操作分類單元 (OTU),但僅在對照組中發現了額外的細菌病原體。然而,與對照組相比,SYN 組顯著增加了腸道中乳酸桿菌Lactobacillus, Shewanella和 Hypnocyclicus 的積累。由於增加的免疫反應,包括酚氧化酶 (PO)、超氧化物歧化酶 (SOD)、溶菌酶活性 (LYZ) 和吞噬活性 (PA),餵食 SYN 的蝦對V. alginolyticus具有顯著抗性。此外,與對照組相比,給予益合素飼料後,血細胞中 pexn 和 pen4 基因以及肝胰腺中 lgbp、sp、propoii、pexn、pen3a、pen4 和 gpx 的基因表達顯著增加。因此,本研究的結果表明,將 KOME 和益生菌作為益合素飼料使用可改善白蝦的生長、健康及病原體抗性,並改變白蝦的腸道微生物菌相。

並列摘要


This study evaluated the effects of a synbiotic diet containing the by-product of king oyster mushroom, Pleurotus eryngii (KOME), and the probiotic Lactobacillus plantarum 7-40 on growth performance, immune response, and intestinal microflora of Litopenaeus vannamei. KOME significantly stimulated the growth of probiotics, but not the growth of Vibrio-like pathogens, including V. alginolyticus, V. parahaemolyticus, and V. harveyi. Four feeds were formulated, including a fish meal basal diet (control), a basal diet supplemented with KOME (5 g kg-1) (ME), a basal diet supplemented with probiotic (1×108 CFU kg-1) (LP), and a basal diet supplemented with KOME (5 g kg-1) and probiotic (1×108 CFU kg-1) (SYN). Shrimp-fed ME, LP, and SYN diets showed significantly high survival rates than controls. In the SYN treatment, shrimp had significantly higher weight gain and total final weight than the control treatment. The number of lactic acid bacteria in the shrimp intestine was substantially higher in the SYN treatment, whereas the Vibrio-like bacteria count was significantly higher in the ME treatment than the control. Metagenomic analysis data detected 13 phyla, 21 classes, 51 orders, 74 families, and 104 genera. Although no significant difference was found, the SYN group showed a higher richness, evenness, Shannon and Simpson diversity index than the control group. Venn diagram data showed that 57 of the operational taxonomic units (OTUs) were shared between the control and SYN groups, but additional bacterial pathogens were only found in the control group. However, the SYN group significantly increased the accumulation of Lactobacillus, Shewanella, and Hypnocyclicus in the intestine compared to the control treatment. Shrimp fed SYN had significant resistance to V. alginolyticus due to increased immune responses, including phenoloxidase (PO), superoxide dismutase (SOD), lysozyme activity (LYZ), and phagocytic activity (PA). In addition, gene expression of pexn and pen4 genes in hemocyte and lgbp, sp, propoii, pexn, pen3a, pen4, and gpx in hepatopancreas was significantly increased after administration of synbiotic feed when compared to controls. Therefore, the results of this study suggest that the combined use of KOME and probiotics as a synbiotic diet improved the growth performance, health status, pathogen resistance and positively altered the intestinal microbial community of white shrimp and concurrently contributes to a more sustainable aquaculture practice.

參考文獻


Abid, A., S. J. Davies, P. Waines, M. Emery, M. Castex, G. Gioacchini, O. Carnevali, R. Bickerdike, J. Romero, and D. L. Merrifield. 2013. Dietary synbiotic application modulates atlantic salmon (Salmo salar) intestinal microbial communities and intestinal immunity. Fish and Shellfish Immunology 35:1948–1956.
Aguiló-Aguayo, I., J. Walton, I. Viñas, and B. K. Tiwari. 2017. Ultrasound assisted extraction of polysaccharides from mushroom by-products. LWT 77:92–99.
Aida, F. M. N. A., M. Shuhaimi, M. Yazid, and A. G. Maaruf. 2009. Mushroom as a potential source of prebiotics: a review. Trends in Food Science and Technology 20:567–575.
Akrami, R., M. Nasri-Tajan, A. Jahedi, M. Jahedi, M. Razeghi Mansour, and S. A. Jafarpour. 2015. Effects of dietary synbiotic on growth, survival, lactobacillus bacterial count, blood indices and immunity of beluga (Huso huso Linnaeus, 1754) juvenile. Aquaculture Nutrition 21:952–959.
Alfadda, A. A., and R. M. Sallam. 2012. Reactive oxygen species in health and disease. Journal of Biomedicine and Biotechnology 2012:1–14.

延伸閱讀