透過您的圖書館登入
IP:3.145.183.137
  • 學位論文

使用感應式耦合電漿化學氣相沉積法在低溫下成長奈米碳管及其場發射特性之研究

Low temperature growth of CNTs by ICP-CVD and their field emission properties

指導教授 : 施文欽
若您是本文的作者,可授權文章由華藝線上圖書館中協助推廣。

摘要


近年來對於奈米材料的研究已經漸形重要,此乃在於奈米材料不僅在化學上且在物理上都展現出相當重要的特性。例如,奈米碳管便是其中一種重要的奈米材料,因為它比起其他微米材料來說擁有更高的表面積及更好的場發射特性。而本篇論文的主要目的便是使用高電漿密度的感應式耦合電漿化學氣相沉積法在低溫下成長高密度且準直性良好的奈米碳管。 在此,我們成功的利用氧化鐵當作催化金屬在500 度以下的溫度且不需藉助高功率的直流偏壓以及多孔性的基板便可成長準直性良好且高密度的奈米碳管。此外,經由TEM的觀察也發現我的所成長的準直性良好的奈米碳管內部是沒有竹節狀結構產生。而且奈米碳管的形貌及長短也可以經由改變實驗的參數而達成,而且場發射的特性隨著奈米碳管的形貌改變而變化也可同時被觀察得到。我們同時實現了,在二極式的架構下當陰極與陽極間隙達210微米時,我們在低於200伏特的情況底下可以得到10微安培的電流。因此,我們認為感應式耦合電漿化學在低溫下工作是十分有利的工具,它讓奈米碳管在成長上擁有了更多的基板的選擇性。

並列摘要


The study of carbon nano-materials have became important in recently, because carbon nano-materials exhibit many physical and chemical properties. For example, carbon nanotubes have higher surface area and excellent field emission phenomena than microscale materials. Our purpose is fabricating highly dense and well aligned carbon nanotubes at low temperature by using the high plasma density ICP-CVD. We have successfully grown well aligned and highly dense carbon nanotubes below 500 oC with FeOx nanoparticle without high DC-bias and porous substrate assistance. In addition, we also grow well aligned CNTs without bamboo structure by observation form TEM image. The phenomena of CNTs can be controlled by changing our parameter, and then the F-E properties are also changed as the morphology of CNTs changed. We also carry out our sample can reach 10 uA as the turn-on voltage low than 200 volt with the diode structure 210 um gap. Therefore, ICP-CVD exhibit powerfully ability to fabricate CNTs at low temperature, it also offer the much more probability as we grow CNTs in various low temperature substrate.

參考文獻


[2] R. Satio, G. Dresselhaus and M. S. Dresselhaus " Physical Properties of Carbon Nanotubes" Imperial College Press(1998).
[4] S. Iijima, Nature 354 (1991) 56.
[6] K. A. Dean and B. R. Chalamala, “Current saturation mechanisms in carbon nanotube field emitters,” Appl. Phys. Lett., vol. 76, pp. 375–377, 2000.
[7] W. Zhu, C. Bower, O. Zhou, G. Kochanski, and S. Jin, “Large current density from carbon nanotube field emitters,” Appl. Phys. Lett., vol. 75, pp. 873–875, 1999.
[10] S. Akita, S. Kamo, and Y. Nakayama, Jpn. J. Appl. Phys., Part 2 41, L487 (2002).

延伸閱讀