透過您的圖書館登入
IP:3.144.36.141
  • 學位論文

透過射頻磁控濺鍍法在氧化物電極/緩衝層/矽基板結構上成長鈦酸鋇薄膜及其在鐵電、介電方面之應用

Growth and Characterization of Barium Titanate Thin Films on Oxide Electrode/Buffer Layer/Si by RF Magnetron Sputtering and Its Ferroelectric and Dielectric Application

指導教授 : 施文欽
若您是本文的作者,可授權文章由華藝線上圖書館中協助推廣。

摘要


摘 要 本文主要利用射頻磁控濺鍍法沉積 BaTiO3 薄膜,研究 BaTiO3 薄膜沉積參數改變對BaTiO3 薄膜成長之影響,並討論於不同的緩衝層(MgO、SrTiO3)與基板結構上時對於其結構方向性的影響,並探討其在不同底電極材料上的鐵電特性、電容改變、介電常數與漏電流之變化,此外,也對於在表面聲波的應用進行研究。 鐵電特性的應用領域方面,考慮五種底電極結構,分別為 LSCO/MgO/Si(100) 、LaNiO3/MgO/Si(100) 、LSCO/SrTiO3/MgO/Si(100) 、LaNiO3/SrTiO3/MgO/Si(100) 與 Pt/Ti/SiO2/Si(100),LSCO與LaNiO3 導電材料以 XeCl 脈衝雷射沉積法在 600oC 以上的基板溫度與 510-2 mbar 的 O2 壓力下皆能製作出具有結晶特性的氧化物下電極薄膜,加入緩衝層改善並加強氧化物電極在Si基板的結構方向性與提升附著力,和傳統Pt電極成長在Si基板結構做比較,並與理想中高優選方向MgO(100) 基板結構相比。 實驗中使用MgO/Si(100) 基板結構雖有單一優選方向,但其電阻係數較高 (510-4、8.510-4 Ω-cm),使用SrTiO3/MgO/Si(100) 基板結構因SrTiO3與氧化物電極有更佳之晶體匹配,使成長在SrTiO3上之電極結構有較低之電阻係數(3.510-3、510-4 Ω-cm),但其電阻係數較高 (8.510-4、110-4 Ω-cm),在MgO(100) 基板所得到的結果最為優越,具有高方向性 (LSCO(200)、LaNiO3(200)) 與較低的電阻係數 (510-4、110-4 Ω-cm)。 BaTiO3 需以 650oC的高溫沉積於五種底電極上才有最佳之結晶特性的出現,但仍以使用 MgO(100) 基板的結果較佳,五種結構之 Pr 分別為 7.73、 9.32、18.7、20.4、3.02 μC/cm2,電容值C分別為142、154、198、211、51 pF,漏電流值(J)7.9110-9、2.1110-9、3.0410-9、1.6610-9、2.1110-7 A/cm2,相較在傳統Pt電極上BaTiO3 較高溫的製程使得電極本身產生變化且有擴散的現象導致 Pr、C、J無法進一步提升,但我們可以確定鈣鈦礦的 LSCO 與LaNiO3 電極對於提升 BaTiO3 的結晶性有正面的助益。

並列摘要


ABSTRACT Barium Titanate (BaTiO3) has excellent properties, including the ferroelectricity, piezoelectricity, electro-optic effect, acousto-optic effect and non-linear optic effect. It was one of the key materials in memory and integrated optics applications such as FeRAM, electro-optic modulation, optical switching et al.. In comparing with the bulk materials, thin films had several advantages such as small size, low cost, easy doping and multi-layer structure. Thus we hoped to deposit BaTiO3 thin film for further applications. We analyzed the crystal properties of MgO and SrTiO3(STO) buffer layer deposited on Si(100) substrate and BaTiO3 thin film prepared on MgO(100) single crystal substrate and Si(100) with MgO and SrTiO3 buffer layer substrate. Following, we analyzed the crystal properties and resistivity of La0.5Sr0.5CoO3 (LSCO) and LaNiO3(LNO) electrode. Finally, the MIM capacitor structures such as Pt/BaTiO3/LSCO/MgO/Si(100), Pt/BaTiO3/LNO/MgO/Si(100), Pt/BaTiO3/LSCO/STO/MgO/Si(100), Pt/BaTiO3/LNO/STO/MgO/Si(100) and traditional Pt/BaTiO3/Pt/Ti/SiO2/Si(100) were prepared by pulse laser deposition and sputtering. We discussed the ferroelectric and dielectric characterization difference due to the effects of different structures, electrode materials and process temperature which we chose.

參考文獻


[1] B. Prince, “Semiconductor Memories”, 1991
[2] J. F. et al., “Ferroelectric Memory: A comparison with other high-speed digital devices”, Ferroelectrics, Vol.116, p.147-155, 1991
[3] R. G. Hunsperger, “Integrated Optics: Theory and Technology”, 1992
[4] Bahaa E. A. Saleh, Malvin Carl Teich, “Fundamentals of Photonics”, 1991
[5] C. K. Campbell, “Surface Acoustic Wave Devices for Mobile and Wireless Communications”, 1998

延伸閱讀