透過您的圖書館登入
IP:18.216.32.116
  • 學位論文

3D介電泳力分離生物粒子之結構設計與製作

DESIGN AND FABRICATION OF BIOPARTICLE SEPARATION DEVICE BY 3D DIELECTROPHORETIC FORCE

指導教授 : 簡昭珩
若您是本文的作者,可授權文章由華藝線上圖書館中協助推廣。

摘要


近年來生物晶片發展迅速,主因配合微機電技術的製程,可讓檢測晶片達到精巧、迅速、方便的目標。在高齡化的時代,健康和醫療更顯格外重要,因此,有關介電電泳對粒子的操控、分離和檢測等技術,皆已陸續被發展出來。本篇論文主要是提出利用微機電製程技術並結合熱壓技術製作介電電泳晶片。 本研究主要利用熱壓崁入技術,製作可提供3D電場的電極結構,目的在於改良平面電極的電場範圍太小的問題點,同時以熱壓的方式製作有別於傳統微機電的體型加工。接合方式以熱壓接合,取代一般利用PDMS與玻璃基板製作介電電泳晶片所需使用接合技術,達到迅速且節省成本的目標。 製作出的晶片經實驗證實,使用熱壓崁入方式製作的電極,對生物粒子可產生吸附作用,同時利用此種方式製作的介電電泳晶片所產生的電場和傳統方式製作的介電電泳相比,不需提高電壓及可達到效果。

並列摘要


Biochip has developed effectively by using the MEMS(Micro Electro-Mechanical System) technologies recently. The technique let biochip become smaller, faster and easier. Now, since the number of old person is getting more and more than before, health and medical treatment are become more important. And because of this reason, the biochip is applied to control and separate cells or particles. In this paper, MEMS technologies and hot embossing process are used to fabricate the dielectrophoretic biochip. In this research, the hot embedding method which is different from traditional MEMS technologies is used to make the electrode with the 3D electric field. The electric field will become huger than before. Using the thermal compression bonding technique to replace the traditional way-use PDMS to do adhesion bonding with glass wafer. Thermal compression bonding reaches the goal of low time-consuming and low cost. The chip we fabricated is demonstrated that the electrode which is fabricated by hot embedding can manipulate the bioparticle. To compare with the traditional dielectrophoretic chip, the chip we made can work without elevating voltage.

並列關鍵字

dielectrophoresis biochip MEMS hot embossing

參考文獻


[1] Pohl, H. A. (1978) “Dielectrophoresis”, Cambridge University
Press, Cambridge
[2] Pohl, H. A. “Some Effects of Nonuniform Fields on Dielectrics”, J. Appl. Phys. 29, pp. 1182-1188 (1958)
[3] S. Masuda, M. Washizu and I. Kawabata, "Movement of Blood Cells in Liquid by Nonuniform Traveling Field", IEEE Trans. IAS, Vol. 24, pp. 217-222 (1988)
[4] Y. Huang, X. B. Wang, J. A. Tame, R. Pethig, “Electrokinetic Behaviour of Colloidal Particles in Travelling Electric Fields: Studies Using Yeast Cells,” Journal of Physics D: Applied Physics, Vol. 26, pp. 1528-1535 (1993)

被引用紀錄


黃智祐(2012)。介電泳微粒子分選晶片之設計與製作〔碩士論文,國立屏東科技大學〕。華藝線上圖書館。https://doi.org/10.6346/NPUST.2012.00264
葉哲愷(2017)。球形粒子之介電泳交越頻率因次分析與預測〔碩士論文,國立臺灣大學〕。華藝線上圖書館。https://doi.org/10.6342/NTU201700928
賀子懿(2010)。兩種菌種分離3D介電泳晶片之設計與製作〔碩士論文,大同大學〕。華藝線上圖書館。https://www.airitilibrary.com/Article/Detail?DocID=U0081-3001201315110060
陳勇州(2011)。介電泳力分離奈米粒子整合石英晶體微天平分析設計〔碩士論文,大同大學〕。華藝線上圖書館。https://www.airitilibrary.com/Article/Detail?DocID=U0081-3001201315111725

延伸閱讀