透過您的圖書館登入
IP:18.220.126.5
  • 學位論文

研究與開發用於減低聚偏二氟乙烯膜生物污染的兩性離子材料

Research and development of zwitterionic materials for the biofouling mitigation of polyvinylidene difluoride membranes

指導教授 : 費安東
共同指導教授 : 張雍(Yung Chang)
本文將於2027/01/19開放下載。若您希望在開放下載時收到通知,可將文章加入收藏

摘要


因兩性離子系統良好的抗沾黏性質,使兩性離子材料已被廣泛用於廢水、生物和醫學領域的薄膜上,本論文探討了新型抗污兩性離子的合成和表徵,以及他們在改質聚偏二氟乙烯薄膜以抵抗各種污染的用途。 在第 1 章中,介紹了多年來發展起來的不同防污系統的介紹和一些最新的相關文獻; 膜分離技術; 並提供膜改性工藝。 本節也說明了本研究的目標。 第 2 章介紹了通過簡單混合方法引入 2-甲基丙烯酰氧基乙基磷酰膽鹼和甲基丙烯酰氧基乙基丁基氨基甲酸酯基團 (PMBU) 對 PVDF 膜進行的簡單改質。 通過蒸汽誘導相分離(VIPS)工藝成功獲得了一套雙連續防污膜。 防污測試表明,PMBU/PVDF 膜能夠抵抗多種生物污染物,其中細菌附著和血小板粘附分別降低到 99.9% 和 98.9%。 第 3 章探討了使用衍生自商業苯乙烯馬來酸酐的兩性離子共聚物通過原位改性調節 PVDF 膜的防污性能。 該膜通過VIPS製膜程序,此製膜方式提供了高度多孔的微濾雙連續結構。 膜的物理化學分析表明,通過添加親水性兩性離子共聚物,膜的潤濕性得到改善。 這無意中導致對細菌和全血的抵抗力增加。 第 4 章詳細分析了磺基甜菜鹼甲基丙烯酸酯 (SBMA) 共聚物在蒸汽滅菌過程後無法抵抗生物分子貼附的問題,並研究了建議的替代共聚物:磺基甜菜鹼甲基丙烯醯胺 (SBAA) 的特性。液相色譜和質譜分析表明 SBMA 單體 (279 g/mol) 的蒸汽滅菌發生在酯鍵斷裂中。可以檢測到 Mw 為 211 g/mol 的物質,以及單體 MS 光譜中 279 g/mol 的原始 SBMA 物質。另一方面,SBAA 在滅菌過程後保持其完整的結構。對於共聚物的相同情況,PS-r-PEGMA-r-SBMA 在滅菌後有碎片,而 PS-r-PEGMA-r-SBAA 在檢測範圍內沒有提供共聚物碎片的證據。這些表明 PS-r-PEGMA-r-SBAA 衍生物可能是製備用於可能需要蒸汽滅菌的生物醫學相關應用的防污兩性離子膜的可行替代品。

並列摘要


Due to their outstanding antifouling properties,zwitterionic materials are ideal candidates for the surface or in-situ modification of membranes used in wastewater treatment or in the biomedical field. This dissertation explores the synthesis and characterization of 3 novel antifouling zwitterionic copolymers, and their use to modify poly(vinylidene fluoride) (PVDF) membranes to resist a wide variety of foulants. Chapter 1 presents the recent state-of-the-art about the different antifouling systems developed throughout the years. It also focusses on membrane separation technology and details related to the different membrane modification processes are also provided. Then, we move on the in-situ modification of PVDF membranes by the incorporation of a copolymer made of 2-methacryloyloxyethyl phosphorylcholine and methacryloyloxyethyl butylurethane groups, referred to as PMBU, by . A set of bi-continuous antifouling membranes were successfully obtained through vapor-induced phase separation (VIPS) process. Antifouling tests reveal that the PMBU/PVDF membranes were able to resist a wide variety of biofoulants. Bacterial attachment and platelet adhesion were reduced to 99.9% and 98.9%, respectively. Chapter 3 then probes into the modulation of the antifouling properties of PVDF membranes through in-situ modification using zwitterionic copolymer derived from commercial styrene maleic anhydride. The membranes were formed via the VIPS process which provided a highly porous bi-continuous structure in the microfiltration range. Physicochemical analyses of the membranes reveal that the wettability of the modified membranes was greatly improved with the addition of the hydrophilic zwitterionic copolymer. This advertently resulted in an increased resistance against bacteria and whole blood. Besides, the zwitterionic membrane was able to provide a high flux recovery ratio of 87% during the cyclic bacteria filtration as opposed to the 64% delivered by the commercial hydrophilic PVDF membrane. Chapter 4 then lays the focuss on an elaborate analysis on the inability of sulfobetaine methacrylate (SBMA) copolymer to resist foulant adhesion after steam sterilization process. Then a copolymer containing sulfobetaine methacrylamide units, SBAA, is proposed as an alternative. Liquid chromatography and mass spectrometry revealed that steam sterilization of SBMA monomers (279 g/mol) arose in the ester bond cleavage. Species of Mw 211 g/mol could be detected, alongside original SBMA species at 279 g/mol from the MS spectrum of the monomer. On the other hand, SBAA maintains its intact structure after the sterilization process. The same situation was observed with the copolymers used for the surface modification of memrbanes. The analysis of PS-r-PEGMA-r-SBMA revealed multiple fragments after sterilization while that of PS-r-PEGMA-r-SBAA did not provide evidence of the copolymer fragmentation in the detection range. These indicate that PS-r-PEGMA-r-SBAA-derivative could be a viable substitute in the preparation of antifouling zwitterionic membranes for biomedical related application where steam sterilization is likely needed.

參考文獻


1. Donlan, R. M., Biofilm formation: A clinically relevant microbiological process. Clinical Infectious Diseases 2001, 33 (8), 1387-1392.
2. Holmlin, R. E.; Chen, X.; Chapman, R. G.; Takayama, S.; Whitesides, G. M., Zwitterionic SAMs that resist nonspecific adsorption of protein from aqueous buffer. Langmuir 2001, 17 (9), 2841-2850.
3. Lewis, A. L.; Cumming, Z. L.; Goreish, H. H.; Kirkwood, L. C.; Tolhurst, L. A.; Stratford, P. W., Crosslinkable coatings from phosphorylcholine-based polymers. Biomaterials 2001, 22 (2), 99-111.
4. Yoshikawa, C.; Goto, A.; Tsujii, Y.; Fukuda, T.; Kimura, T.; Yamamoto, K.; Kishida, A., Protein repellency of well-defined, concentrated poly (2-hydroxyethyl methacrylate) brushes by the size-exclusion effect. Macromolecules 2006, 39 (6), 2284-2290.
5. Mrabet, B.; Nguyen, M. N.; Majbri, A.; Mahouche, S.; Turmine, M.; Bakhrouf, A.; Chehimi, M. M., Anti-fouling poly (2-hydoxyethyl methacrylate) surface coatings with specific bacteria recognition capabilities. Surface Science 2009, 603 (16), 2422-2429.

延伸閱讀