透過您的圖書館登入
IP:18.119.111.9
  • 學位論文

研製分佈式感應子及壓電致動器應用之光壓電材料

Developing Optopiezoelectric Materials for Distributed Sensors and Piezoelectric Actuators

指導教授 : 李世光
共同指導教授 : 王安邦(An-Bang Wang)
若您是本文的作者,可授權文章由華藝線上圖書館中協助推廣。

摘要


微操控技術於近年來蓬勃發展於微機電設備、生物晶片以及微流體系統。自十九世紀末,原子力學顯微鏡、光鉗與磁鉗被實現於操控單一細胞或原子;熱泳、介電泳與介電濕潤等非接觸式操控技術也相繼被提出,來提高控制待測物的力量與效率,並且降低傷害樣品的風險。近年來,許多感光複合材料相繼被開發並應用於操控技術中,使用快速變換的光照圖樣,改變晶片中局部電場或熱場,進而達成操控微物體的效果。然而,傳統的光調變技術,僅提供或感測奈米牛頓等級的力學場,故本論文提出光壓電複合材料,將光敏材料與壓電材料結合,藉由照光圖樣局部調變壓電的電場與力學場,並將驅動或感測的力學場數量級提升10^6數量級 。本論文於第三章,以直流偏壓175伏特驅動微流道系統中的壓電片,有效侷限蠕蟲運動範圍。於第四章,使用感光染料(spiropyran)/液晶複合壓電片(PZT),研製光壓電懸臂樑致動器,探討其位移與頻率隨紫外光(365 nm, 0.7 mW/cm^2 )照射而上升及偏移數十赫茲之機制。此外,發展光壓電感測器P(VDF-TrFE)/ TiOPc,提出摻入TiOPc濃度為10%重量百分濃度,可使材料具有最佳光調變壓電的表現。並且於第五章,複合壓電PZT與40% w.t. TiOPc/ 樹脂,研製量測誤差小於10%的光壓電彎曲感測器,並驗證此感測器具有快速動態調變、反應效率佳、不影響待測物振動行為等優點,因此更能夠改善傳統力學感測器因佈點位置差異造成的誤差。本論文透過探討壓電片於流體中的效率、研製並了解光壓電致動器與感測器的表現,所取得的模擬、實驗及分析結果,將能作為未來創新光壓電或光壓電流體應用之參考。

並列摘要


The micro-/ nano mechanical manipulation has been recently progressively developed for micromechanical equipment, biochips, and microfluidic devices. Since the end of the 19th century, the atomic force microscopy, optical tweezers, and magnetic tweezers have been proposed to control single cell or atom. Some indirect control methods, such as optothermal mechanism, opto-electrowetting (OEW) and optical dielectrophoresis (ODEP) techniques, provide us with larger force, better efficiency, and less damage on the objects. In these years, many optical sensitive composite materials are integrated into control systems; the electrical or thermal field can be modulated by light pattern for manipulating particles or droplets. However, these conventional optical control techniques deliver actuating or sensing force only in the nN range. In this dissertation, the optopiezoelectric actuator or sensor can modulate mN force by varying the distribution of the illuminated light pattern. In Chapter 3, a PZT actuator is triggered with 175 DC voltage in microfluidic device to efficiently trap living C. elegans. In Chapter 4, the optopiezoelectric cantilever beam actuator of spiropyran/ liquid crystal- PZT performs UV (365 nm, 0.7 mW/cm^2) modulated amplitude with few tens (Hz) frequency shift. And the P(VDF-TrFE)/ TiOPc optopiezoelectric sensors are fabricated and developed with an optimal 10 % w.t. TiOPc concentration. In traditional point bending sensor, the signal error is closely related to its position. Thus in Chapter 5, a full field optopiezoelectric bending sensor, PZT- 40% w.t. TiOPc/ resin, performs less than 10% error with numerical analysis. Without effects on the host structure, it has fast and easy modulation capability by using spatially distributed light illumination patterns. Overall, this thesis discusses the piezoelectric effect in microfluidics, developing and understanding the optopiezoelectric performance. We expect the simulation, experimental and analytical results can provide some evidences and references for future innovative optopiezoelectric or optopiezoelectric fluidics application.

參考文獻


[1] K. Ariga, T. Mori and J. P. Hill, “Mechanical control of nanomaterials and nanosystems,” Advanced Materials 24, 158-176 (2012).
[2] K. C. Neuman and A. Nagy, “Single-molecule force spectroscopy: optical tweezers, magnetic tweezers and atomic force microscopy,” Nature Methods 5, 491-505 (2008).
[3] D. Dulin, J. Lipfert, M. C. Moolman et al., “Studying genomic processes at the single-molecule level: introducing the tools and applications,” Nature Reviews
[5] D. J. Muller and Y. F. Dufreふne, “Atomic force microscopy: a nanoscopic window on the cell surface,” Trends in Cell Biology 21, 461-469 (2011).
[6] F. Rico, A. Rigato, L. Picas et al., “Mechanics of proteins with a focus on atomic force microscopy,” Journal of Nanobiotechnology 11, Suppl 1: S3-1-12 (2013).

延伸閱讀