透過您的圖書館登入
IP:3.238.233.189
  • 學位論文

光質對室內植物光合作用表現及甲醛移除能力之影響

Effects of Light Quality on Photosynthetic Characteristics and Removal of Formaldehyde in Indoor Plants

指導教授 : 葉德銘

摘要


本研究模擬室內低光強度環境,利用發光二極體(light emitting diode, LED)可調整光質之特點,探討不同光質對室內植物光合作用特性之影響。且因室內裝潢、建材多含高量甲醛(formaldehyde),容易於室內累積造成室內空氣品質不良,故本研究亦進一步探討不同光質對室內植物甲醛移除能力之影響。 分別以光強度17.5、57.5及19.5 μmol·m-2·s-1之藍:紅比例0%、9%、16%、43%、88%、95%及100%光質,處理黛粉葉‘星光燦爛’、白鶴芋‘帕拉斯’及粗肋草‘銀后’,以純藍光處理者新生葉片數較少,而高比例紅光處理者新生葉片數較多。藍光比例43%以上或紅光比例大於84%,皆會使黛粉葉‘星光燦爛’葉片之最小螢光值(Fo)上升,而最大光化學利用效率(Fv/Fm)及有效光化學效率(Fv’/Fm’)值降低,粗肋草‘銀后’ Fo亦隨紅光比例自57%增加至100%而上升,但對白鶴芋‘帕拉斯’之影響較無明顯趨勢。藍光比例大於43%或紅光比例57%以上之處理,黛粉葉‘星光燦爛’、白鶴芋‘帕拉斯’及粗肋草‘銀后’葉片淨光合作用(net photosynthetic rate, Pn)、氣孔導度及蒸散作用速率下降,但隨藍光比例增加(43%至100%),使細胞間隙二氧化碳濃度(intercellular CO2 concentration, Ci)升高。藍光比例大於43%時,葉片之Rubisco活性指標(Pn/Ci)亦下降。純藍光及純紅光處理者最大淨光合作用速率與光合作用量子產量較紅藍混合光質處理者低。 於0-300 μmol·m-2·s-1藍:紅比例0%、9%、16%、43%、88%、95%及100%光質下測量黛粉葉‘星光燦爛’、白鶴芋‘帕拉斯’及粗肋草‘銀后’光合作用參數。結果顯示黛粉葉‘星光燦爛’在光強度75 μmol·m-2·s-1以上時以純藍光及純紅光處理者之淨光合作用速率較低,白鶴芋‘帕拉斯’則在100 μmol·m-2·s-1以上時以純藍光處理者較低,而粗肋草‘銀后’則未有顯著差異。 在50 μmol·m-2·s-1環境下,置於含36%綠光之白光LED 燈處理2週,對參試12種天南星科室內植物之淨光合作用速率皆無顯著影響,但隨著燈管中藍光比例自22%增加至47%,黃金葛、黃金葛‘萊姆’、火鶴‘熱情’、合果芋‘紅蝴蝶’、合果芋‘綠精靈’、粗肋草‘銀后’及黛粉葉‘白玉’之葉片氣孔導度增加。 在純藍光、純紅光、白光(紅、藍及綠光質比為19:29:52) LED燈及T5螢光燈處理下,白鶴芋‘帕拉斯’、臺灣山蘇、波斯頓腎蕨及黛粉葉‘白玉’於擺放木心板之密閉熏氣箱內皆可移除木心板所釋放之甲醛。純藍光及純紅光LED燈處理中,以紅光LED處理之白鶴芋‘帕拉斯’每盆及每單位葉面積甲醛移除量較低,而藍光LED燈處理之波斯頓腎蕨較紅光LED燈處理有較多甲醛移除量,且能較快降低箱內甲醛濃度。而混合光質之T5螢光燈管處理,可使臺灣山蘇每盆及每單位葉面積甲醛移除量較高。

並列摘要


This study aimed to evaluate effects of light emitting diode (LED) light quality on photosynthetic characteristics of indoor plants. As interior decoration and building materials would cause high levels of formaldehyde accumulation and poor indoor air quality, effects of light quality on removal of formaldehyde by indoor plants was also investigated. Diffenbachia ‘Sparkle’, Spathiphyllum kochii ‘Palas’, and Aglaonema ‘Silver Queen’ were grown under light intensity of 17.5, 57.5, and 19.5 μmol·m-2·s-1 photon flux density (PPF), respectively, with different blue : red ratios of 0%, 9%, 16%, 43%, 88%, 95%, and 100%. Plants grown under 100% blue light had fewer new leaf number, while those under high red light ratios (84%-100%) had more new leaf number. Diffenbachia ‘Sparkle’ grown under high ratios of blue (over 43%) or red (over 84%) light exhibited increased Fo value, and decreased Fv/Fm, and Fv’/Fm’ values. Fo value of leaves in Aglaonema ‘Silver Queen’ increased as red light ratio increased from 57% to 100%. Fv/Fm value of Spathiphyllum ‘Palas’ did not vary with the light quality tested. Plants grown under higher ratios of blue (over 43%) or red light (over 57%) had lower net photosynthesis rate (Pn), stomatal conductance, and transpiration rate. Intercellular CO2 concentration (Ci) decreased with blue light ratio increased from 43% to 100%. Plants grown under higher ratios of blue light (over 43%) had lower Rubisco activity index (Pn/Ci). Plants grown under 100% blue and 100% red light had lower maximum net photosynthesis rate and quantum yield of CO2 fixation than those grown with mixed light. Photosynthetic characteristics were measured for three plant species grown under light intensity of 0 to 300 μmol·m-2·s-1 PPF with various blue : red ratios (0%, 9%, 16%, 43%, 88%, 95%, and 100%). Results showed Pn was lower in Diffenbachia ‘Sparkle’ plants grown at 75 μmol·m-2·s-1 or higher light intensity with 100% blue or 100% red light. Spathiphyllum ‘Palas’ plants had lower Pn when grown under 100% blue light at 100 μmol·m-2·s-1 or higher light intensity, Pn of Aglaonema ‘Silver Queen’ plants were not affected by various blue : red ratio treatments. Twelve Araceae plant species were grown under LED white light including 36% green light and different blue to red light ratio (22%, 30%, and 47% blue light) at light intensity of 50 μmol·m-2·s-1 PPF for 2 weeks. Pn of the tested plants were not affected by light quality. However, stomatal conductance of Epipremnum aurem, Epipremnum aurem ‘Lime’, Anthurium andraeanum ‘Passion’, Syngonium podophyllum ‘Roxana’, Syngonium podophyllum ‘Pixie’, Aglaonema ‘Silver Queen’, and Diffenbachia ‘Camilla’ increased when blue light percentage increased from 22% to 47%. Spathiphyllum ‘Palas’, Asplenium nidus, Nephrolepis exaltata ‘Bostoniensis’, and Diffenbachia ‘Camilla’ plants were placed in chambers with one block wooden board under 100% blue, 100% red, white (red:blue:green ratio is 19:29:52) LED light, and T5 fluorescent lamp. Results showed tested plant species could remove formaldehyde released from the wooden board. Spathiphyllum ‘Palas’ placed under 100% red LED light removed less formaldehydethan those under 100% blue LED light. Nephrolepis exaltata ‘Bostoniensis’ placed under 100% blue LED light removed more formaldehyde than those placed under 100% red LED light. Asplenium nidus placed under T5 fluorescent lamp removed more formaldehyde than 100% blue, 100% red, and white LED light treatments per potted plant and per leaf area.

參考文獻


曹哲維. 2011. 栽培光度及介質對室內植物吸收苯及甲苯之影響. 國立臺灣大學植物病理與微生物學系碩士論文.
余軍洪. 2010. 常見室內植物移除甲醛能力之研究. 國立臺灣大學園藝學系碩士論文.
陳彥宇. 2007. 常見室內植物對甲醛及二氧化碳之吸收及反應. 國立臺灣大學植物病理與微生物學系碩士論文.
黃東海. 2007. 既有辦公建築室內空氣品質改造及檢測之研究-以高雄市辦公建築為例. 國立成功大學建築研究所碩士論文.
林君穎. 2004. 環境因子對室內建材VOCs及Formaldehyde 逸散率之影響研究. 國立成功大學環境醫學研究所碩士論文.

延伸閱讀