透過您的圖書館登入
IP:18.219.189.247
  • 學位論文

量子點敏化光觸媒水裂解產氫與太陽能電池

Quantum-Dot-Sensitized Photocatalytic Water Splitting Hydrogen Generation and Solar Cells

指導教授 : 劉如熹

摘要


全球暖化議題近年備受注目,且石油終將耗盡,故各界積極開發大自然資源材料與無汙染之綠色能源,其中利用太陽光作為能源之光觸媒產氫(water splitting)與太陽能電池(solar cell)成為重要發展方向,因此須開發新穎之工作電極,以提高其光電轉換效率。本研究乃利用水熱法(hydrothermal method)於摻氟之二氧化錫基板上成長高均向性之一維氧化鋅(zinc oxide)奈米柱作為工作電極,並合成碲化鎘與碲化汞鎘量子點作為其光敏化劑,將其附著於氧化鋅奈米柱工作電極上,進而成功製作具光敏化效果之功能性複合半導體薄膜。 本研究中將碲化鎘(CdTe)與碲化汞鎘(HgCdTe)量子點吸附於氧化鋅奈米柱表面,利用量子點吸收可見光中偏紅光區域波段之特性,藉以提升光電流,進而提升光電轉換效率,由實驗結果顯示,加入碲化鎘量子點後之氧化鋅奈米柱之效率從0.66%增加至1.83%,提升約200%之效率,當加入碲化汞鎘量子點後之氧化鋅奈米柱之效率從0.66%增加至2.24%,提升約240%之效率,已成功提升量子點敏化光觸媒產氫與量子點敏化太陽能電池效率,展現量子點敏化之效果。 此外,對碲化鎘與碲化汞鎘量子點作細胞毒性測試,發現碲化鎘與碲化汞鎘量子點均具誘發細胞死亡之作用,均會抑制細胞之生長,故更進一步對量子點作細胞凋亡機制分析。

並列摘要


Global warming much attention in recent years, and the oil will eventually run out, so people positively develop the natural resources of materiaproduction and solar cell have become an important direction of development. It is necessary to develop novel working electrode in order to improve its energy conversion efficiency. In this study, utilizing hydrothermal method to grow high-isotropic one-dimensional zinc oxide nanorods on fluorine-doped tin oxide substrate as the working electrode. Synthesis of cadmium telluride or mercury cadmium telluride quantum dots as photosensitizer. Then quantum dots attached to zinc oxide nanorods on the working electrode, and then successfully produced functional effects of a photosensitive compound semiconductor films. In this study, cadmium telluride and mercury cadmium telluride quantum dots adsorbed on the surface of zinc oxide nanorods. Using quantum dots absorb visible light in the red side band of the region to enhance the photocurrent and thus enhance the photoelectric conversion efficiency, which had successfully enhanced quantum dots-sensitized photocatalytic water splitting and quantum dot-sensitized solar cell efficiency. The results showed that the efficiency of cadmium telluride quantum dots join to ZnO nanorods increased from 0.66% to 1.83%, which enhance the efficiency of about 200%, and the efficiency of mercury cadmium telluride quantum dots join to ZnO nanorods increased from 0.66% to 2.24%, which enhance the efficiency of about 240%. In addition to doing cell toxicity test of the cadmium telluride and mercury cadmium telluride quantum dots and finding that cadmium telluride and mercury cadmium telluride quantum dots have a role in induced cell death. This will inhibit the cell growth. Therefore, further on the mechanism of quantum dots for analysis of apoptosis.

參考文獻


[36] 賴致遠,化學浴沉積法合成氧化鋅奈米線及其特性分析,國立成功大學化學工程研究所碩士論文,民95.
[1] Chapin, D. M.; Fuller, C. S.; Pearson, G. L. “A NEW SILICON P-N JUNCTION PHOTOCELL FOR CONVERTING SOLAR RADIATION INTO ELECTRICAL POWER”, J. Appl. Phys. 1954, 25, 676.
[2] O’ Regan, B.; Grätzel, M. “A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films”, Nature 1991, 353, 737.
[4] Raviendra, D.; Sharma, J. K. “Electroless deposition of cadmium
stannate, zinc oxide, and aluminm-doped zinc oxide films”, J. Appl. Phys. 1985, 58, 838.

延伸閱讀