透過您的圖書館登入
IP:3.128.199.162
  • 學位論文

微流體實驗室晶片系統應用於銅配位聚合物單晶之化學合成

Microfluidic Lab on a chip for chemical synthesis of copper coordination complex single crystal

指導教授 : 凌永健
若您是本文的作者,可授權文章由華藝線上圖書館中協助推廣。

摘要


微流體實驗室晶片(Lab on a Chip)是將研究和操作尺度微小化,在化學層面的應用,可直接減少藥品的使用量,大幅縮小存放空間,達到減容減廢的綠色和經濟目標。本研究已成功示範出兩種新型微流道實驗室晶片,並應用於有機無機金屬配位聚合物的製備。 首先使用層流概念設計Y字型流道實驗室晶片,使用PDMS與玻璃來製作雙層結構,其目地為達到藥品、溶劑的使用量顯著減小,並且在結晶時間略優於傳統試管操作下,使用Y字型流道晶片,成功的在流道內合成出{[Cu(bpe)(SO4)(H2O)3]•3.5(H2O)•0.5(CH3OH)}n,但其缺點是僅能做單一反應條件的結晶測試,因此在第二部分設計可陣列反應的旋轉晶片,利用製作PMMA雙層可轉動構想的實驗室晶片,搭配陣列快速選取結晶條件設計,使上下腔室碰觸進而反應,製作出一套高效率、低成本,用於快速篩選結晶條件的實驗室晶片,並成功在此組晶片內,合成出,[Cu2(AcO)4(bpa)]n、{[Cu(AcO)2(bpa)(H2O)]∙2H2O}n、{[Cu(bpa)2(SO4)]•3.5H2O∙CH3OH}n配位聚合物,上述配位聚合物,經由X射線單晶繞射儀做結晶結構的確認。

並列摘要


Abstract This research explores how miniaturization may revolutionize chemical synthesis highlighting in particular environmental benefits of this new lab on a chip technology, which includes solvent less, in situ crystalline generation and integrated step-controllable reaction. Furthermore, the low required volume of preparing chemicals at point of use avoids the need to store and transport hazardous materials. We demonstrate two novel crystal synthesis chips. First, the crystalline of {[Cu(bpe)(SO4)(H2O)3]•3.5(H2O)•0.5(CH3OH)}n was successfully prepared based on laminar flow in order to reduce the amount of sample and solvent by Y-font channel chip. Traditional crystalline synthesis methods are neither environmental friendly nor economic; our second approach solves these problems. The double rotatable layers consists of two different reaction chambers (upper and lower layers) on chip made by PMMA can be used for high throughput without leakage and can easily be disassembled and reassembled. Our method is suitable for ordinary labs having no expensive equipment to fabricate microfluidic chips. In this study [Cu2(AcO)4(bpa)]n、{[Cu(AcO)2(bpa)(H2O)]∙2H2O}n、{[Cu(bpa)2(SO4)]•3.5H2O∙CH3OH}n have been synthesized in double rotatable layers chip and identified by SCXRD. This lab on a chip approach provides an alternative and promising method with environmental benefits and economic advantage.

並列關鍵字

無資料

參考文獻


26. Daw, R.; Finkelstein, J., Lab on a chip. Nature 2006, 442 (7101), 367-367.
1. Feynman, R. P., There's Plenty of room at the Bottom. 1959.
2. Feynman, R. P., Infinitesimal Machinery. 1984.
3. Fan, L. S.; Tai, Y. C.; Muller, R. S., Integrated Movable Micromechanical Structures for Sensors and Actuators. Ieee T Electron Dev 1988, 35 (6), 724-730.
4. Toft, K. N.; Vestergaard, B.; Nielsen, S. S.; Snakenborg, D.; Jeppesen, M. G.; Jacobsen, J. K.; Arleth, L.; Kutter, J. P., High-throughput Small Angle X-ray Scattering from proteins in solution using a microfluidic front-end. Anal. Chem. 2008, 80 (10), 3648-3654.

延伸閱讀