透過您的圖書館登入
IP:3.145.191.22
  • 學位論文

新穎製備鋁摻雜氧化鋅複合式光電極之染料敏化太陽能電池

Novel Fabrication of Al Doping ZnO Composite Photoanode for Dye Sensitized Solar Cell

指導教授 : 蔡振凱
若您是本文的作者,可授權文章由華藝線上圖書館中協助推廣。

摘要


本研究以水熱法製備低密度的鋁摻雜氧化鋅微米柱在無晶種層的FTO導電玻璃上,其微米柱長度約為10 μm左右,之後再使用刮刀塗佈法將直徑約為25 nm的二氧化鈦奈米粒子刮於微米柱之間。鋁摻雜氧化鋅微米柱(NPs/MRs)複合電極再經過機械加壓420kg/cm2,其中氧化鋅微米柱狀結構作為光散射層及光電子快速傳輸路徑;光散射層能增加入射光的行走路徑,進而提高入射光與二氧化鈦粒子之間的碰撞機率;而二氧化鈦奈米粒子可以吸附更多的染料進而提升光電流,因此氧化鋅微米柱(NPs/MRs)複合電極可以有效提升染料敏化太陽能電池之特性。藉由分析中得知,當二氧化鈦薄膜厚度增加時,光電特性隨之提升,其主要原因是跟染料吸附量有關,薄膜厚度的增加,染料吸附量也就越多,照光後染料激發之電子增多,使得阻抗下降。 本實驗對單純二氧化鈦薄膜進行了機械壓縮和薄膜厚度分析,並發現在機械壓力420kg/cm2下有著26.6μm薄膜厚度,浸泡N3染料後有著最佳的太陽能轉換效率9.01%,且將研究出來的最佳的機械壓力和薄膜厚度應用於複合電極中。為了找出較佳的鋁摻雜含量,本實驗製備了鋁和鋅莫爾濃度為2.5%-50%摻雜含量的氧化鋅微米柱並且應用於染料敏化太陽能電池,摻雜以後的氧化鋅不只改變了電性,也改善電極表面形貌,鋁離子的嵌入亦能增強電子傳導性與材料表面極性,使微米柱電極對染料吸附能力增加、抑止ZnO2+/dye 錯合物的產生。在水熱環境中摻雜20%鋁使氧化鋅微米柱增強結晶性,使電極長度由4 μm 增加至9 μm,半徑則由0.5 μm增加到1 μm。我們發現,微米柱直徑適當的增加可以減少電子傳輸阻抗,使得電子傳輸更為快速,進一步的讓電子在氧化鋅微米柱的短路電流從14.72 mA/cm2增加到19.91 mA/cm2。本篇發現在染料D149浸泡下鋁和鋅莫爾濃度比為20%有著較好的電性且也表現出最高的氧化鋅染料敏化太陽能電池效率8.20 %。

並列摘要


In this study, the composite photo-anode of TiO2 nanoparticles (NPs) and Al-doped ZnO microrods (MRs) was fabricated on fluorine-doped tin oxide (FTO) glass. Al-doped ZnO MRs, length of ~10 μm, grown by hydrothermal method on free seed FTO glass, followed by Doctor blade of TiO2 NPs (diameter of 25 nm), on the MRs surface. The columnar structure of ZnO MRs as a light scattering layer and a channel for transmit rapidly the photoelectron. Light scattering layer can increase the path length of the incident light and enhances the collided probability between the incident light and TiO2 NPs. TiO2 NPs has large surface area to absorb dye and thus enhance the light current. Therefore, TiO2 NPs and ZnO MRs composite photo-anode can enhance the features of dye-sensitized solar cells (DSSCs). Al-doped ZnO microrods arrays with the Al contents in the region of 2.5%-50% were prepared and evaluated as photoanodes for DSSCs. It was found that Al-doping has changed not only electrical properties but also the morphology and structure of the ZnO microrods. to improve the electrode surface morphology, aluminum ion can embed and enhance the electronic conductivity of materials surface polarity, so that microrods electrode to increase the adsorp Hydrothermal growth of Al/Zn 20% microrods increased body surface area, the length of electrode from 4 μm to 9 μm, radius of electrode from 0.5 μm to 1 μm and the short-circuit current of up to 14.72 mA/cm2 from 19.91 mA/cm2. The diameter of the ZnO microrods also changes with the addition of Al. Our results indicate that an appropriate increase in the diameter of the nanorods is favorable due to the reduction in electron transport resistance, which further speeds up electron transport in the ZnO microrods arrays leading to the increase of short-circuit current. In the electrical measurement analysis, when the Al/ZnO of 20% shows the best electrically and also showed the highest zinc oxide dye-sensitized solar cell efficiency of 8.20%.

並列關鍵字

ZnO TiO2 Dye-Sensitized Solar Cells

參考文獻


[51] C.-S. Lin, “The Synthesis of Tetrapod Zinc Oxide Whiskers and the Influence of Calcination on Optical Property”, Chemistry, 67 (2) (2009) 207-213.
[34]林明獻,2007,“太陽能電池技術入門”, 第二章.
[28] 薛惟聰,2008,“新型含雙噻吩環戊烷之有機小分子光敏化染料的合成與性質探討”,國立中央大學化學研究所碩士論文。
[58] 陳政廷,2008,“混合有機色素分子共增感對色素增感太陽電池光電轉換效率的影響” 。
[30] 張智信,2008,“陽極處理法製備二氧化鈦奈米管狀結構並應用於染料敏化太陽能電池之研究”,國立臺北科技大學材料科學與工程研究所碩士學位論文。

被引用紀錄


施力綺(2015)。氧化鋅複合式奈米結構應用於可撓式染料敏化太陽能電池〔碩士論文,國立虎尾科技大學〕。華藝線上圖書館。https://doi.org/10.6827/NFU.2015.00142

延伸閱讀