透過您的圖書館登入
IP:18.223.119.17
  • 學位論文

電滲力應用於細胞/粒子收集效率之探討

An Investigation on the Collecting Efficiency of Cells and Micro Particles by Electro-osmosis

指導教授 : 魏哲弘
若您是本文的作者,可授權文章由華藝線上圖書館中協助推廣。

摘要


本論文主要是研究在兩平行電極中,使用交流電場來產生電滲力來進行酵母菌細胞 的收集。本研究利用康寧1737 的玻璃為底材濺鍍上鉻來當作底部電極,之後再塗佈 上一層薄膜正光阻作為絕緣層,利用微影技術在絕緣層上製造窗口,露出底部鉻電 極,而膠乳粒子及細胞則被收集於底部鉻電極上面打開的窗口,窗口大小約為 900μ m×900μ m , 依須求可打開數個窗口來進行收集,上電極使用ITO 玻璃作為電 極,以利於使用顯微鏡觀察實驗情況,二個電極間使用PDMS spacer 來隔開建立約 750μ m 距離。實驗使用酵母菌細胞,電流源採用方波來產生交流式電動力,施加電 壓為1-5Vp-p ,頻率為50-5000Hz 間,如此形成電動力式的微幫浦,進行對細胞的收 集。並同時採用商用軟體Femlab 3.0 電場的模擬分析,可瞭解電場分佈情形,進而 與實驗結果比較。此收集技術相當容易控制,對微型總合分析系統( μ TAS、 micro-Total Analysis Systems)及微流體技術未來也許有重大的影響和發展,並且可以 相當容易的和許多利用電場來進行分析的分析模組結合。

並列摘要


The collecting and sorting yeast cells and latex particles by electric force is easy to integrate with other bioassays. There are many forms of electric forces such as electrophoresis, dielectrophoresis and electro-osmosis which can be used to manipulate particles. In an attempt to understand the role of electro-osmosis and dielectrophoresis in the collection of yeast cells and latex particles, a small device made of two parallel plates is used to study the particle movement under low frequency AC condition. The device is fabricated by a top electrode and a bottom electrode separated by a spacer. The top electrode is made from an ITO glass and the bottom electrode is made from Corning 1737 glass sputtered with chromium. The spacer is made by spin coating a thin photo-resist (0.5~1 μ m) to separate these electrodes. A 900μ m× 900 μ m collecting window is defined on the bottom electrode by photolithography. A low frequency (50 Hz), low power (5V) was applied to the top electrode to generate the non-uniform electric field.There seems to be a range of frequency that leads to better particle movements. A numerical simulation about electric field and fluid velocity distribution is used to demonstrate the effect of dielectrophoresis and electro-osmosis.

並列關鍵字

dielectrophoresis electro-osmosis

參考文獻


1. A .Manz, N.Graber , H M .Widmer .(1990 )"Miniaturized total chemical analysis systems: a novel concept for chemical sensing," Sens Actuator B , B1:244-248.
3. K H. Bhatt and O D. Velev ,(2004) “Control and Modeling of the Dielectrophoretic Assembly of On-Chip Nanoparticle Wires” Langmuir 20, 467-476.
4. Junqing Wu, Gaurav Soni, Dazhi Wang, Carl D. Meinhart , “AC Electrokinetic Pumps for Micro/NanoFluidics” IMECE2004-61836.
6. D. Reyes, D. Issifidis, P. Auroux, and A. Manz. ( 2002) "Micro Total Analysis Systems." Anal Chem., 74, 2623-2636.
7. U. Zimmermann( 1986 )” Electrical breakdown, electropermeabilization and electrofusion” Rev. Physiol. Biochem. Pharmacol. 105.175–256.

被引用紀錄


吳映龍(2010)。以微流體免疫捕捉技術分離微量仿生細胞之研究〔碩士論文,國立清華大學〕。華藝線上圖書館。https://doi.org/10.6843/NTHU.2010.00264

延伸閱讀