透過您的圖書館登入
IP:3.144.212.145
  • 學位論文

使用二氧化鈦鎳金屬濾網之空氣淨化設備效能評估

Assessment of Application of TiO2 Nickel Filter for the Air Pollution Removal of Indoor Air Cleaner

指導教授 : 曾昭衡

摘要


本研究利用以鎳金屬為基材之濾網鑲嵌二氧化鈦,裝設於配備紫外光(365 nm) 燈管之空氣清淨機中,分別在空氣品質測試艙與實場進行污染物之去除效能測試。利用可控制環境條件之測試艙設定不同相對濕度及空氣污染物之初始濃度(HCHO、TVOC) 進行去除效率測試,探討市售光觸媒濾網與二氧化鈦鎳金屬濾網在相同條件下之去除效率,並建立光觸媒濾網之失效預測模式;本研究選擇四處實場檢測空氣污染物(HCHO、TVOC、Bacteria、Fungi),利用空氣清淨機開啟前後之污染物濃度變化評估二氧化鈦鎳金屬濾網之實場移除效率,另將測試艙之實驗參數條件代入質量平衡模式,以此模式及氣流分析軟體CONTAM模擬實場使用二氧化鈦鎳金屬濾網之空氣清淨機時,污染物濃度隨時間之變化,驗證CONTAM之可行性。 測試艙HCHO、TVOC之60分鐘測試結果,污染物受到相對濕度之影響較明顯,於固定濃度低相對濕度(RH= 40%) 下甲醛、總揮發性有機物去除率(26.6%、19.9%) 較佳,以CADR值評估清淨機效能時均與去除率之結果相符;在低濃度高相對濕度時,市售光觸媒濾網與光觸媒二氧化鈦鎳金屬濾網之HCHO、TVOC去除率,以二氧化鈦磷灰石濾網最佳(53.3%、15.0%) ,二氧化鈦鎳金屬濾網次之(9.8%、13%) ,蜂巢式濾網(0.1%、2.4%) 與不織布濾網(-2.5%、-1.29%) 去除率則不顯著,由於磷灰石對有機物吸附性較二氧化鈦佳故去除率較好,蜂巢式濾網與污染物接觸面積小,不織布濾網則因其在紫外光照射下易脆化使觸媒剝落,分別為去除率較差之原因。實場污染物去除效率測試結果,實場空間大小與人數變化為主要影響因素,建議二氧化鈦鎳金屬濾網之使用,應考慮清淨機風量之有效坪數。以平均絕對百分誤差方法(Mean Absolute Percentage Error, MAPE) 進行預測準確度驗證,應用質量平衡模式模擬實場污染物HCHO、TVOC 之20分鐘濃度變化,MAPE值結果HCHO (34.67~89.97%) 多數皆在預測準確度可接受之範圍,TVOC(6.18~363.81%)則為準確度佳。應用CONTAM模擬實場之移除率,結果顯示HCHO與TVOC之MAPE平均值為55.56%、149.97%,顯示運用CONTAM模擬實場HCHO與TVOC移除率之可行性不佳。

並列摘要


This study focus on removing indoor air pollutants by air cleaner with filter coated with titanium dioxide (TiO2) on foamy nickel metal and UV light beam (365 nm) both in test chamber and on site. The control conditions for chamber tests are concentration of formaldehyde (HCHO) and total volatile compounds (TVOC) and different relative humidity for air pollutants removal efficiency. Then on the same conditions the removal efficiency of nickel filter with TiO2 and formal photo-catalytic filters will be discussed. Based on the used chamber test, the photo-catalytic filter deactive predict equation was calculated. Furthermore, field tests were conducted at a preschool, an education institute, a family medicine clinic, and an otolaryngological clinic for HCHO, TVOC, fungi, and bacteria concentrations were monitored and sampled to study both the background IAQ status and the on-site reducing efficiencies of the photo-catalyst filters. A field model of indoor air cleaner (parameters: initial air pollutants concentration, CADR, room volume, air exchange rate) was developed to estimate pollutants concentration verse time by using cleaners with the photo-catalyst filters. The used of CONTAM model and field model of indoor air cleaner simulates the air pollutants on-site reducing efficiency variable with time of air cleaner with TiO2 nickel filter to improved the feasibility for CONTAM. The chamber test result for HCHO and TVOC at 60min showed that relative humidity had a greater significant influence than the pollutants initial concentration. HCHO and TVOC had a well removal efficiency of 26.6% and 19.9% at the same concentration and low humidity (RH= 40%). With the condition of low concentration and high humidity of HCHO and TVOC great removal efficiency include the TiO2 coated on apatite filter (53.3% and 15.0%) , TiO2 coated on nickel filter (9.9% and 13.1%) , honeycomb filter (0.1% and 2.4%) and polypropylene filter (-2.5% and -1.29%). Apatite has an excellent adsorption compared to TiO2’s result in best removal efficiency. Furthermore, small contact area with pollutants of honeycomb filter and polypropylene filter embrittle by UV light had the low removal efficiency. The field test results indicated the number of people variable and field volume was the main factor in on-site reducing efficiency. When using cleaner, field size volume should be considered. The Mass Balance model of indoor air cleaner simulated 20 minutes of HCHO and TVOC variable in field and the use of MAPE (Mean Absolute Percentage Error) resulted that the HCHO predicted value was in the acceptable range (34.67~89.97%) and TVOC (6.18~363.81%) was in choiceness range. Moreover, the chamber results showed that MAPE value had 55.56% and 149.97% for HCHO and TVOC when simulated in CONTAM. The results showed that HCHO and TVOC was not feasible.

並列關鍵字

Titanic dioxide HCHO TVOC Bioaerosol nickel filter

參考文獻


[70] 行政院環境保護署,室內空氣品質建議值,2005。
[80] 林文海、陳雅惠、白佳原,醫院之空氣中生物氣膠濃度,中山醫學雜誌,台中,2004。
[86] 婁嘉玲,紫外光與光觸媒濾材對生物氣膠殺菌效率之研究,碩士論文,國立台灣大學環境工程學研究所,台北,2005。
[2] Adhikari, A., T. Reponen, S. A. Grinshpun, D. Martuzevicius and G. LeMasters, “Correlation of ambient inhalable bioaerosols with particulate matter and ozone: a two-year study, " Environmental Pollution, vol. 140, 2006, pp.16-28.
[3] Akula Venkatrama, V.I., Robert Seila, and Richard Baldauf, "Modeling the impacts of traffic emissions on air toxics concentrations near roadways," Atmospheric Environment, vol. 43, 2009, pp. 3191-3199.

被引用紀錄


趙怡璇(2012)。光觸媒鎳金屬濾網對空氣中甲醛及總揮發性有機物之淨化效能評估〔碩士論文,國立臺北科技大學〕。華藝線上圖書館。https://doi.org/10.6841/NTUT.2012.00388
徐俊國(2014)。奈米金銀及甲殼素活性碳之濾網吸附動力模式〔碩士論文,國立臺北科技大學〕。華藝線上圖書館。https://www.airitilibrary.com/Article/Detail?DocID=U0006-0708201416515400

延伸閱讀