透過您的圖書館登入
IP:18.226.28.197
  • 學位論文

多晶矽晶片不同粗糙程度對太陽電池發電效率之研究

Research of Etch texturing to Generation Electricity of solar cell

指導教授 : 段葉芳
若您是本文的作者,可授權文章由華藝線上圖書館中協助推廣。

摘要


本論文為研究結晶矽太陽能電池之蝕刻技術。多晶矽晶片之粗糙化製程為太陽能電池前段製程中之重要步驟,酸蝕刻液對晶片表面的作用除了可以消除晶片在切割時造成切割損傷外,更可將晶片表面蝕刻成凹凸平面,降低陽光在晶片表面的反射,增加入射光量,提高太陽能電池之效率。 本篇內容主要針對不同蝕刻深度對轉換效率之影響以及不同抗反射層膜厚度對轉換效率之影響,最後將不同蝕刻深度與不同抗反射層膜厚度進行比較。依實驗結果顯示,整體轉換效率趨勢隨著蝕刻深度而變化,而各種抗反射層膜厚的變化趨勢並無蝕刻深度影響顯著。

關鍵字

太陽電池 多晶矽 蝕刻深度

並列摘要


This paper is about poly-crystalline silicon solar cell process and technique. The process of texture etching on the poly-crystalline silicon is an important reaction step during the pre-process of solar cell fabrication. The acidic etchant can not only remove the saw damage on the surface during the process of sawing and polishing, but also form a specific non-uniformity surface. Whereas, the process reduces the reflectance of surface of silicon wafer and improves the conversion efficiency of solar cell. This study, focuses on the different etch depth and thickness of anti-reflection layer impact of conversion efficiency of solar cell. In the end, it makes a comparison between the two experiment factors. The experimental results indicated that the conversion efficiency changes with etch depth the most, and the thickness of anti-reflection layer is invariant in this experiment.

並列關鍵字

Solar cell Poly-crystalline Etch depth

參考文獻


1. G.. R. Davis, “Energy for planet earth”,Sci. Amer, Vol.263, No. 3, pp.21-27, 1990.
7. D. A. Neamen, “Semiconductor physics & devices”, 2nd edition, McGraw-Hill
8. K. Bean, “Anisotropic etching of Silicon” IEEE Transaction on Electron Devices, Vol. ED-25, No.10, pp.1185-1193, 1978
10. Martin A. Green, “Solar Cell Operating Principles, Technology and System Application”, University of New South Wales Press, 1982, pp.4-6 & 85-96
12. Stensrud Marstein, E. et al. 2005, “Acidic texturing of muliticrystalline siliconwafers”, Photovoltaic Specialists Conference, 2005. pp. 1309-1312.

延伸閱讀