透過您的圖書館登入
IP:3.137.211.239
  • 學位論文

矽化鐵錳奈米結構的合成與性質研究

Synthesis and Properties of Fe1-xMnxSi Nanostructures

指導教授 : 陳力俊

摘要


在此研究中,透過化學氣相蒸鍍以單一步驟成功合成出具有室溫鐵磁特性和高長寬比矽化鐵錳奈米線。這是最先將磁性的錳粒子添加進主結構中以部分取代的方式形成三元的矽化物的成果。合成出的矽化鐵錳奈米線在磁特性的表現上有優異的行為,除了室溫鐵磁還具備有極高的磁阻變化。鐵奈米線在磁化量對外加磁場的關係圖當中,可發現磁滯特性在10K到300K的溫度熱擾下,受影響程度相當的小,顯示出材料的強鐵磁特色,導因於磁性錳粒子的添加取代。磁阻特性在25K時可以得到最佳的結果,當錳含量為12%的奈米線在磁場9特斯拉與25K的環境下可以得到負41.6%的阻率變化,相較於其他的磁性矽化物奈米線高出許多。

並列摘要


High-aspect-ratio Fe1-xMnxSi nanowires with room-temperature ferromagnetism were synthesized by a chemical vapor deposition method in one step. This is the first report of ternary silicide nanowires using magnetic Mn ions to partially replace metal sites in the host matrix. Excellent magnetic characteristics of Fe1-xMnxSi nanowires, which exhibit strong ferromagnetism at room temperature and high magnetoresistance variation, were found. The magnetization versus magnetic field curves of Fe1-xMnxSi nanowires is much less sensitive to the temperature variation from 10 K to 300 K than those of FeSi nanowires. Remarkably, the excellent MR performance, -41.6% at 25 K with a magnetic field of 9 T, was demonstrated for an individual Fe0.88Mn0.12Si nanowire.

參考文獻


Chapter 1
1. Feynman, R. P. There’s Plenty of Room at the Bottom. Eng. Sci. 1960, 23, 22-36.
3. Drexler, K. E. The Coming Era of Nanotechnology. Doubleday, London, 1986.
4. Alivisatos, A. P. Semiconductor Clusters, Nanocrystals, and Quantum Dots. Science 1996, 271, 933-937.
5. Krans, J. M.; Rutenbeek, J. M. V.; Jongh, L. J. D. The Signature of Conductance Quantization in Metallic Point Contacts. Nature 1995, 375, 767-768.

延伸閱讀