透過您的圖書館登入
IP:18.221.145.52
  • 學位論文

功率源頻率對大氣電漿束之影響

Driving Frequency Effects on the Characteristics of Atmospheric Pressure Plasma Jets

指導教授 : 寇崇善

摘要


本實驗之研究目的為探討操作頻率對大氣電漿束系統之影響。實驗的設備為實驗室自製的可變頻功率源和實驗室研發線型大氣電漿束。以氦氣為放電氣體,改變功率源頻率範圍,從10 MHz到20 MHz,隨著操作頻率的增加可以觀察到以下幾種現象:(1)電漿的崩潰電壓從256 V降低至204 V,(2)維持α模式放電的最高電漿密度從0.798×〖10〗^12 〖cm〗^(-3)上升至2.218×〖10〗^12 〖cm〗^(-3)以及電流從0.125 A提高至0.224 A,(3)放電模式轉換前的鞘層厚度從0.348 mm減少為0.257 mm,(4)電漿功率為25 W時電子激發溫度從0.535 ev降為0.316 ev。綜合以上結果,提升功率源的頻率,有助於提升電漿的品質、改善放電效率以及能使大氣電漿束系統有更廣泛的應用空間。

並列摘要


The study was to investigate the driving frequency effects on the characteristics of atmospheric plasma jets system. The discharge gas is the helium. We change the power source frequency range from 10 MHz to 20 MHz. As the driving frequency is increased, we can observe the several phenomena. (1) gas breakdown voltage from 256 V down to 204 V, (2) plasma density from 0.798×〖10〗^12 〖cm〗^(-3) rose to 2.218×〖10〗^12 〖cm〗^(-3) and increase the current from 0.125 A to 0.224 A when the plasma state at highest α mode discharge, (3) sheath thickness decreased from 0.348 mm to 0.257 mm before discharge mode transition, (4) the electron excitation temperature dropped from 0.535 ev 0.316 ev when the plasma power of 25 W. Collectively, these results suggest that the high driving frequency help to improve the quality of plasma, enhance discharge efficiency, and make the atmospheric plasma jets systems have a wider application space.

參考文獻


[1]M. Goldman and N. Goldman, “Corona discharges,” in Gaseous Electronics vol. 1: New York, 1978.
[3]M. Goldman and R. S. Sigmond, "Corona and Insulation," IEEE Transactions on Electrical Insulation, vol. 17, pp. 90-105, 1982.
[4]M. Hur and S. H. Hong, "Comparative analysis of turbulent effects on thermal plasma characteristics inside the plasma torches with rod- and well-type cathodes," Journal of Physics D-Applied Physics, vol. 35, pp. 1946-1954, Aug 21 2002.
[5]P. Fauchais and A. Vardelle, "Thermal plasmas," IEEE Transactions on Plasma Science, vol. 25, pp. 1258-1280, Dec 1997.
[6]U. Kogelschatz, "Filamentary, patterned, and diffuse barrier discharges," IEEE Transactions on Plasma Science, vol. 30, pp. 1400-1408, Aug 2002.

延伸閱讀