Translated Titles

Accessibility Study for Pipeline Maintenance





Key Words

管線維運 ; 建築資訊模型 ; 管線可及性 ; 機電管線 ; 資訊視覺化 ; Pipeline Maintenance ; Building Information Model (BIM) ; Pipeline Accessibility ; Mechanical, Electrical, and Plumbing (MEP) ; Information Visualization



Volume or Term/Year and Month of Publication


Academic Degree Category




Content Language


Chinese Abstract

管線維運在現代建築以及建築資訊模型等相關研究中,逐漸成為優先考量的議題之一。工程人員在管線維運期間的設備及管線可及性,為設計和管理階段重要的考量因素。早期研究曾探討多重機電管線的複雜度以及資訊視覺化的重要性,然而現有工具並無法有效預測管線的操作可及程度和維護難易,在設計階段卻又很少考慮到中期的操作及後期的管理維護。本研究將管線在維運階段的可及性,分為以下三個類別:可視性(Visual Accessibility)表示人眼可看到的管線部分、可達性(Approachable Accessibility)表示空間內人員可以到達的區域、可操作性(Operational Accessibility)表示人員可直接操作的管線範圍。針對提出之三種可及性類別建立數學模型,並討論其人因細節,探討人員在維運期間對於管線操作及維護的各種情境和可及程度。本研究開發一工具(VAO Checker),透過即時分析,將管線可及性的資訊視覺化。並進行使用者測試評估其使用性及效率,分析結果顯示VAO Checker比2D平面圖以及3D模型有更高的正確率,表現度也比傳統的2D平面圖好。管線設計者能透過此工具清楚瞭解管線可及性的相關資訊,並規劃適合工程人員操作和維護的管線路徑,並展望未來能整合此研究,建立周全的資料庫做為管線路徑設計優化的參考。

English Abstract

Pipeline maintenance is becoming an important issue in modern construction and building information model (BIM) research. An understanding of pipeline accessibility considerations in terms of maintenance is essential for planning and management. Previous studies have highlighted the complexity of multi-pipes including mechanical, electrical and plumbing (MEP) pipelines and the importance of information visualization, but few have proposed a way to consider accessibility problems during maintenance. Therefore, this study develops a systematic method to evaluate accessibility with respect to pipeline maintenance. We first divided pipeline accessibility into three categories: (1) visual accessibility—the visibility for an inspector to view; (2) approachable accessibility—the difficulty for an inspector to approach; and (3) operational accessibility—the pipeline that can be operated by the inspectors. We created mathematical models and discussed the ergonomic details about each category. We then developed a user interface, VAO Checker, in which V, A and O stand for visual, approachable and operational respectively, to display visual information about pipeline accessibility. Through instantaneous analysis, the system visualizes the accessibility of the pipelines. We visually represent the intersection and union of these three categories to illustrate the varying accessibility of pipe elements. A usability test was conducted to validate the system’s effectiveness. The results of the usability analysis show that users have higher correctness when using VAO Checker than 2D plan drawing and 3D model, and they evaluate the performance of this tool better than 2D plan drawing. Pipeline designers can benefit by using this tool to sketch a suitable traffic flow for engineers to investigate. Furthermore, the substantial amount of information saved in the layout database could be referenced for future optimization.

Topic Category 工學院 > 土木工程學研究所
工程學 > 土木與建築工程
  1. [1] Biehl, WH, & Inman, JA (2010). Energy optimization for water systems. Journal: American Water Works Association, 102 (6).
  2. [2] Calixto, EES, Bordeira, PG, Calazans, HT, Tavares, CAC, Rodriguez, MTD (2009). Plant design project automation using an automatic pipe routing routine. Computer Aided Chemical Engineering, 27, 807-812. doi:10.1016/S1570-7946(09)70355-4.
  3. [3] Chang, HS, Kang, SC, Chen, PH (2009). Systematic procedure of determining an ideal color scheme on 4D models. Advanced Engineering Informatics, 23(4), 463-473. doi: 10.1016/j.aei.2009.05.002.
  4. [9] Guirardello, R, & Swaney, RE (2005). Optimization of process plant layout with pipe routing. Computers & Chemical Engineering, 30(1), 99-114. doi: 10.1016/j.compehemeng.2005.08.009.
  5. [11] Junnila, S, Horvath, A, Guggemos, AA (2006). Life-cycle assessment of office buildings in Europe and the United States. Journal of Infrastructure Systems, 12(1), 10-17. doi:10.1061/(asce)1076-0342(2006)12:1(10).
  6. [13] Kim, D, Corne, D, Ross, P (1996). Industrial plant pipe-route optimisation with genetic algorithms. Lecture Notes in Computer Science, 1141, 1012-1021.
  7. [15] Kuo, CH, Tsai, MH, Kang, SC (2011). A framework of information visualization for multi-system construction. Automation in Construction, 20(3), 247-262. doi: 10.1016/j.autcon.2010.10.003.
  8. [18] Nathan, A (2006). Windows Presentation Foundation Unleashed. Indianapolis: Sams Publishing.
  9. [19] Newell, RG (1972). An interactive approach to pipe routing in process plants. Proceedings of IFIP Congress 71, London, 6-10 Sep.
  10. [20] Park, JH, & Storch, RL (2002). Pipe-routing algorithm development: case study of a ship engine room design. Expert Systems with Applications, 23(3), 299-309. doi: 10.1016/s0957-4174(02)00049-0.
  11. [22] Riley, DR, Varadan, P, James, JS, Thomas, HR (2005). Benefit-cost metrics for design coordination of mechanical, electrical, and plumbing systems in multistory buildings. Journal of Construction Engineering and Management, 131(8), 877-889. doi: 10.1061/(asce)0733-9364(2005)131:8(877).
  12. [24] Russell, AD, Chiu, CY, Korde, T (2009). Visual representation of construction management data. Automation in Construction, 18(8), 1045-1062. doi: 10.1016/j.autcon.2009.05.006.
  13. [25] Schmidt-Traub, H, Koster, M, Holtkotter, T, Nipper, N (1998). Conceptual plant layout. Computers & Chemical Engineering, 22, Supplement 1(0):S499-S504. doi: 10.1016/S0098-1354(98)00093-3.
  14. [26] Songer, AD, Hays, B, North, C (2004). Multidimensional visualization of project control data. Construction Innovation: Information, Process, Management, 4(3), 173-190. doi: 10.1108/14714170410815088.
  15. [27] The American Bureau of Shipping (2003). Guidance Notes on the Application of Ergonomics to Marine Systems. Houston: American Bureau of Shipping.
  16. [28] Tsai, MH, Kang, SC, Hsieh, SH (2010). A three-stage framework for introducing a 4D tool in large consulting firms. Advanced Engineering Informatics, 24(4), 476-489. doi: 10.1016/j.aei.2010.04.002.
  17. [29] Tsai, MH, Kang, SC, Hsieh, SH (2013). Lessons learnt from customization of a BIM tool for a design-build company. Journal of the Chinese Institute of Engineers, 37(2), 189-199. doi: 10.1080/02533839.2013.781791.
  18. [32] Zhou, C, & Yin, Y (2010). Pipe assembly planning algorithm by imitating human imaginal thinking. Assembly Automation, 30(1), 66-74. doi: 10.1108/01445151011016082.
  19. [33] Zhu, D, & Latombe, JC (1991). Mechanization of spatial reasoning for automatic pipe layout design. Artificial Intelligence for Engineering, Design, Analysis and Manufacturing, 5(1), 1-20. doi: 10.1017/S089006040000250X.
  20. [4] Chen, YH, Tsai, MH, Kang, SC, Liu, CW (2013). Selection and evaluation of color scheme for 4D construction models. Journal of Information Technology in Construction, 18, 1-19.
  21. [5] Deliang, L, & Huibiao, L (2009). Interfere-check applying to 3D automatic pipe route arrangement. Proceedings of International Conference on Computational Intelligence and Software Engineering, Wuhan, 11-13 Dec. doi:10.1109/cise.2009.5365920.
  22. [6] Feng, H, Fu, Y, Li, L (2012). Layout space modeling for automation design of pipeline system. Proceedings of 2012 International Conference on Mechatronics and Automation (ICMA), Chengdu, 5-8 Aug. doi:10.1109/icma.2012.6283259.
  23. [7] Gao, Z, Walters, RC, Jaselskis, EJ, Wipf, TJ (2006). Approaches to improving the quality of construction drawings from owner's perspective. Journal of Construction Engineering and Management, 132(11), 1187-1192. doi: 10.1061/(asce)0733-9364(2006)132:11(1187).
  24. [8] Grootjans, R (2009). XNA 3.0 Game Programming Recipes: A Problem-Solution Approach. New York: Apress.
  25. [10] Ito, T (1999). A genetic algorithm approach to piping route path planning. Journal of Intelligent Manufacturing, 10(1), 103-114. doi: 10.1023/a:1008924832167.
  26. [12] Khanzode, A, Fischer, M, Reed, D (2008). Benefits and lessons learned of implementing building virtual design and construction (VDC) technologies for coordination of mechanical, electrical, and plumbing (MEP) systems on a large healthcare project. Journal of Information Technology in Construction, 13, 324-342.
  27. [14] Korde, T, Wang, Y, Russell, A (2005). Visualization of construction data. Proceedings of 6th Construction Specialty Conference, Toronto, Canada, 2-4 June.
  28. [16] Miller, T, & Johnson, D (2010). XNA Game Studio 4.0 Programming: Developing for Windows Phone 7 and Xbox 360. Boston: Addison-Wesley Professional.
  29. [17] Mitsuta, T, Kobayashi, Y, Wada, Y, Kiguchi, T, Yoshinaga, T (1987). A knowledge-based approach to routing problems in industrial plant design. Proceedings of 6th International Workshop on Expert Systems & Their Applications, Avignon, France, 28-30 Apr.
  30. [21] Qian, Xl, Ren, T, Wang, CE (2008). A survey of pipe routing design. Proceedings of 2008 Chinese Control and Decision Conference, Yantai, Shandong, 2-4 July. doi:10.1109/ccdc.2008.4598081.
  31. [23] Rourke, PW (1975). Development of a Three-Dimensional Pipe Routing Algorithm. PhD Dissertation, Lehigh University.
  32. [30] Wang, CP (2011). An Approach for Assessing Reachability of Wheelchair Users. Master Thesis, National Taiwan University.
  33. [31] Wangdahl, GE, Pollock, S, Woodward, JB (1974). Minimum-trajectory pipe routing. Journal of Ship Research, 18(1), 44-49.