Title

幾丁聚醣與改質環氧樹脂壓克力合成功能性生醫材料之應用

Translated Titles

Synthesis and Characterization of Chitosan and Modified Epoxy Acrylate as Functional Biomaterials

Authors

趙文齊

Key Words

幾丁聚醣 ; 聚乙二醇甲醚 ; 創傷敷料 ; 多官能基 ; 壓克力 ; 光聚合 ; 牙科修復 ; 兒茶素 ; 表沒食子兒茶素沒食子酸酯 ; chitosan ; mPEG ; wound dressing ; multifunctional ; acrylate ; photocurable ; restorative ; dental ; Epigallocatechin gallate ; EGCG

PublicationName

臺灣大學高分子科學與工程學研究所學位論文

Volume or Term/Year and Month of Publication

2013年

Academic Degree Category

碩士

Advisor

謝國煌

Content Language

繁體中文

Chinese Abstract

在眾多生物醫學材料中,幾丁聚醣(Chitosan)近年來受到廣泛關注,其為天然的高分子材料,具有良好生物相容性、生物可降解性以及抗菌性等優點。可以運用在不同領域中。 本研究利用兩種分子量的聚乙二醇甲醚與兩種分子量的幾丁聚醣進行接枝改質,並使用了兩種方式來進行鍵結,分別是利用醯胺鍵與尿素官能基鍵結。其中使用醯胺鍵進行接枝反應有效大幅提升幾丁聚醣敷料的吸水性,在避免傷口有過多滲出液方面有好的表現;而使用尿素官能基改質的系列中,選用了具水溶性的低分子量幾丁聚醣,使其水溶液不具有醋酸,使其成為噴劑形式之幾丁聚醣敷料,改善傳統敷料因為身體曲線無法密合的缺點。 在第二部分研究中,與台大臨床牙醫所合作,延伸本研究團隊先前所製作低收縮率複合樹脂與使用二氧化矽膠體溶液,將顆粒表面羥基經由甲基丙烯酸酯基三甲氧基矽(3-(trimethoxy silyl) propyl methacrylate, MSMA)改質具有雙鍵官能基,使其在固化後與有機樹脂基質間可以形成共價鍵結,增進機械性質。應用於牙科填補材具有低收縮率,可有效預防補牙時產生隙縫造成二次龋齒。為了更進一步改善預防二次龋齒,我們將表沒食子兒茶素沒食子酸酯(Epigallocatechin gallate, EGCG)進行改質,使其具有雙鍵官能基,期望能在不失去太多抗菌性的狀況下,改善其穩定性,並使其能與材料鍵結,延長抗菌的時間,以達長期預防龋齒的功效。經傅立葉轉換紅外線光譜儀(FT-IR)確定反應可行及所需時間,以0μg/g~3000μg/g混入材料中,經養菌後用掃瞄式電子顯微鏡(Scanning Electron Microscope, SEM)證實細菌隨EGCG濃度增加而減少,確實具有抗菌效果。

Topic Category 工學院 > 高分子科學與工程學研究所
工程學 > 化學工業
Reference
  1. 1. Langer, R.V.J., Tissue engineering. Science, 1993. 260: p. 920-6.
  2. 2. 吳豐智, 曾如鈴, 神奇的物質-幾丁質和幾丁聚醣. 化工技術, 1997. 5: p.196-201.
  3. 3. Madhavan, P., Chitin, Chitosan and their Novel Applications, in ScienceLectrue Series. 1992: Kochi. p. 1.
  4. 4. Muzzarelli, R.A.A., Natural Chelating Polymer, in Pergamon Press. 1973:New York. p. 83.
  5. 5. Zikakis, J.P., Chitin, Chitosan and Related Enzymes, in Academic Press. 1984:Orlando.
  6. 6. Rinaudo, M., G. Pavlov, and J. Desbrieres, Influence of acetic acidconcentration on the solubilization of chitosan. Polymer, 1999. 40(25): p.7029-7032.
  7. 7. Paul W, S.C., Chitosan and alginate wound dressings:A short review. TrendsBiomater Artif Organs, 2004. 18: p. 18-23.
  8. 8. Brown, M.A., M.R. Daya, and J.A. Worley, Experience with Chitosan Dressingsin a Civilian EMS System. The Journal of Emergency Medicine, 2009. 37(1):p. 1-7.
  9. 9. Wichterle O, L.D., Hydrophobic gels in biologic use. Nature, 1960.185:p.117.
  10. 10. Berger, J., et al., Structure and interactions in covalently and ionically crosslinked chitosan hydrogels for biomedical applications. European Journal of Pharmaceutics and Biopharmaceutics, 2004. 57(1): p. 19-34.
  11. 11. X. Chen, W.L., W. Zhong, Y. Lu, T. Yu, pH sensitivity and ion sensitivity of hydrogel based on complex-forming chitosan/silk fibroin interpenetrating. J. Appl. Polym. Sci, 1997. 65: p. 2257-2262.
  12. 12. M. N. Khalid, L.H., J. L. Agnely, J. L. Grossiord, G. Couarraze, Swelling properties and mechanical characterization of a semi-interpenetrating chitosan/polyethylene oxide network: Comparison with a chitosan reference gel. STP Pharm. Sci., 1999. 9: p. 359-364.
  13. 13. Crescenzi, V., et al., New hydrogels based on carbohydrate and on carbohydrate-synthetic polymer networks. Polymer Gels and Networks, 1997. 5(3): p. 225-239.
  14. 14. Wang, M., Y. Fang, and D. Hu, Preparation and properties of chitosan-poly(N-isopropylacrylamide) full-IPN hydrogels. Reactive and Functional Polymers, 2001. 48(1-3): p. 215-221.
  15. 15. Wang, M., et al., Preparation and properties of chitosan-poly(N-isopropylacrylamide) semi-IPN hydrogels. Journal of Polymer Science Part A: Polymer Chemistry, 2000. 38(3): p. 474-481.
  16. 16. Risbud, M., A. Hardikar, and R. Bhonde, Growth modulation of fibroblasts by chitosan-polyvinyl pyrrolidone hydrogel: Implications for wound management? Journal of Biosciences, 2000. 25(1): p. 25-30.
  17. 17. Murakami, K., et al., Hydrogel blends of chitin/chitosan, fucoidan and alginate as healing-impaired wound dressings. Biomaterials, 2010. 31(1): p. 83-90.
  18. 18. Boucard, N., et al., The use of physical hydrogels of chitosan for skin regeneration following third-degree burns. Biomaterials, 2007. 28(24): p. 3478-3488.
  19. 19. Ishihara, M., et al., Photocrosslinkable chitosan as a dressing for wound occlusion and accelerator in healing process. Biomaterials, 2002. 23(3): p. 833-840.
  20. 20. Mattioli-Belmonte, M., et al., Chitin Nanofibrils Linked to Chitosan Glycolateas Spray, Gel, and Gauze Preparations for Wound Repair. Journal of Bioactive and Compatible Polymers, 2007. 22(5): p. 525-538.
  21. 21. Zhou, Y., et al., Electrospun Water-Soluble Carboxyethyl Chitosan/Poly(vinyl alcohol) Nanofibrous Membrane as Potential Wound Dressing for Skin Regeneration. Biomacromolecules, 2007. 9(1): p. 349-354.
  22. 22. Cai, Z.-x., et al., Fabrication of Chitosan/Silk Fibroin Composite Nanofibers for Wound-dressing Applications. International Journal of Molecular Sciences, 2010. 11(9): p. 3529-3539.
  23. 23. Kossovich, L.Y., Y. Salkovskiy, and I.V. Kirillova, Electrospun Chitosan Nanofiber Materials as Burn Dressing, in 6th World Congress of Biomechanics (WCB 2010).2010:Springer Berlin Heidelberg.p. 1212-1214.
  24. 24. Liu, B.-S., C.-H. Yao, and S.-S. Fang, Evaluation of a Non-Woven Fabric Coated with a Chitosan Bi-Layer Composite for Wound Dressing. Macromolecular Bioscience, 2008. 8(5): p. 432-440.
  25. 25. Sachlos E, C.J., Making tissue engineering scaffolds work. Review: the application of solid freeform fabrication technology to the production of tissue engineering scaffolds. Eur Cells Mater, 2003. 5: p. 29-40.
  26. 26. Dagalakis, N., et al., Design of an artificial skin. Part III. Control of pore structure. Journal of Biomedical Materials Research, 1980. 14(4): p. 511-528.
  27. 27. Yannas, I.V., et al., Design of an artificial skin. II. Control of chemical composition. Journal of Biomedical Materials Research, 1980. 14(2): p. 107-132.
  28. 28. Yannas, I.V. and J.F. Burke, Design of an artificial skin. I. Basic design principles. Journal of Biomedical Materials Research, 1980. 14(1): p. 65-81.
  29. 29. Denkbaş, E.B., et al., Norfloxacin-loaded Chitosan Sponges as Wound Dressing Material. Journal of Biomaterials Applications, 2004. 18(4): p. 291-303.
  30. 30. Mi, F.-L., et al., Fabrication and characterization of a sponge-like asymmetric chitosan membrane as a wound dressing. Biomaterials, 2001. 22(2): p. 165-173.
  31. 31. Mizuno K, Y.K., Yano K, Osada T, Saeki S, Takimoto N ,et al., Effect of chitosan film containing basic fibroblast growth factor on wound healing in genetically diabetic mice. J Biomed Mater Res, 2003. 64A: p. 177-181.
  32. 32. Ong, S.-Y., et al., Development of a chitosan-based wound dressing with improved hemostatic and antimicrobial properties. Biomaterials, 2008. 29(32): p. 4323-4332.
  33. 33. Li, L.-H., et al., Preparation, characterization and antimicrobial activities of chitosan/Ag/ZnO blend films. Chemical Engineering Journal, 2010. 160(1): p. 378-382.
  34. 34. Poison, A., A Theory for the Displacement of Proteins and Viruses with Polyethylene Glycol. Preparative Biochemistry, 1977. 7(2): p. 129 - 154.
  35. 35. WR Gombotz, W.G., TA Horbett, AS Hoffman, Protein adsorption to and elution from polyether surface. 1992.
  36. 36. Working Peter, K., et al., Safety of Poly(ethylene glycol) and Poly(ethylene glycol) Derivatives, in Poly(ethylene glycol). 1997, American Chemical Society. p. 45-57.
  37. 37. Abuchowski, A., et al., Alteration of immunological properties of bovine serum albumin by covalent attachment of polyethylene glycol. Journal of Biological Chemistry, 1977. 252(11): p. 3578-3581.
  38. 38. Lee, S.B., et al., Preparation and properties of polyelectrolyte complex sponges composed of hyaluronic acid and chitosan and their biological behaviors. Journal of Applied Polymer Science, 2003. 90(4): p. 925-932.
  39. 39. Mucha, M., Rheological properties of chitosan blends with poly(ethylene oxide) and poly(vinyl alcohol) in solution. Reactive and Functional Polymers, 1998. 38(1): p. 19-25.
  40. 40. Zhang, M., et al., Properties and biocompatibility of chitosan films modified by blending with PEG. Biomaterials, 2002. 23(13): p. 2641-2648.
  41. 41. Kolhe, P. and R.M. Kannan, Improvement in Ductility of Chitosan through Blending and Copolymerization with PEG: FTIR Investigation of Molecular Interactions. Biomacromolecules, 2002. 4(1): p. 173-180.
  42. 42. Mao, S., et al., Synthesis, characterization and cytotoxicity of poly(ethylene glycol)-graft-trimethyl chitosan block copolymers. Biomaterials, 2005. 26(32): p. 6343-6356.
  43. 43. Kulkarni, A.R., et al., A Novel Method for the Synthesis of the PEG-Crosslinked Chitosan with a pH-Independent Swelling Behavior. Macromolecular Bioscience, 2005. 5(10): p. 925-928.
  44. 44. Zhang, X., D. Yang, and J. Nie, Chitosan/polyethylene glycol diacrylate films as potential wound dressing material. International Journal of Biological Macromolecules, 2008. 43(5): p. 456-462.
  45. 45. Tanuma, H., et al., Preparation and characterization of PEG-cross-linked chitosan hydrogel films with controllable swelling and enzymatic degradation behavior. Carbohydrate Polymers, 2010. 80(1): p. 260-265.
  46. 46. Kiuchi, H., W. Kai, and Y. Inoue, Preparation and characterization of poly(ethylene glycol) crosslinked chitosan films. Journal of Applied Polymer Science, 2008. 107(6): p. 3823-3830.
  47. 47. Kong, X., Synthesis and characterization of a novel MPEG–chitosan diblock copolymer and self-assembly of nanoparticles. Carbohydrate Polymers, 2010 79(1): p. 170-175.
  48. 48. Ngawhirunpat, Incorporation methods for cholic acid chitosan-g-mPEG self-assembly micellar system containing camptothecin. Colloids Surf B Biointerfaces, 2009 74(1): p. 253-259.
  49. 49. Casettari, L., et al., Effect of PEGylation on the Toxicity and Permeability Enhancement of Chitosan. Biomacromolecules, 2010. 11(11): p. 2854-2865.
  50. 50. 趙壯飛, 劉江川, 劉鴻文, 呂美華, 醫用組織學彩色圖譜. 2001.
  51. 51. Michael H.Ross, L.J.R., Gordon I.Kaye, Histology: A Text and Atlas. 1998.
  52. 52. 范如霖, 范文峰, 曹光磊, 皮膚組織病理學. 1972.
  53. 53. Telles, D.d.S. A complete diagram of the human skin. Available from: http://en.wikipedia.org/wiki/Skin.
  54. 54. Kilbad. This is a hematoxylin and eosin stained slide at 10x of normal skin. Available from: http://en.wikipedia.org/wiki/File:Epidermis-delimited.JPG.
  55. 55. Mikael Haggstrom, b.o.w.b.W. Layers of the epidermis. Available from: http://en.wikipedia.org/wiki/File:Epidermal_layers.png.
  56. 56. This is a hematoxylin and eosin stained slide of normal epidermis. Available from: http://neuromedia.neurobio.ucla.edu.
  57. 57. Tsuboi, R. and D.B. Rifkin, Recombinant basic fibroblast growth factor stimulates wound healing in healing-impaired db/db mice. The Journal of Experimental Medicine, 1990. 172(1): p. 245-251.
  58. 58. Harari, J., Surgical Complications and Wound Healing in the Small Animal Practice, ed. J. Harari. Vol. 22. 1993: Blackwell Publishing Ltd.
  59. 59. The phases of cutaneous wound healing. Available from:http://www.pilonidal.org/aftercare/wound_healing_indepth.php.
  60. 60. Cancer as an overhealing wound: an old hypothesis revisited. Available from: http://www.nature.com/nrm/journal/v9/n8/fig_tab/nrm2455_F1.html
  61. 61. Tsao, C.T., et al., Evaluation of chitosan/[gamma]-poly(glutamic acid) polyelectrolyte complex for wound dressing materials. Carbohydrate Polymers, 2011. 84(2): p. 812-819.
  62. 62. Adekogbe, I. and A. Ghanem, Fabrication and characterization of DTBP-crosslinked chitosan scaffolds for skin tissue engineering. Biomaterials, 2005. 26(35): p. 7241-7250.
  63. 63. Ciapetti, G., et al., Application of a combination of neutral red and amido black staining for rapid, reliable cytotoxicity testing of biomaterials. iomaterials, 1996. 17(13): p. 1259-1264.
  64. 64. Roberts, M.J., M.D. Bentley, and J.M. Harris, Chemistry for peptide and protein PEGylation. Advanced Drug Delivery Reviews, 2002. 54(4): p. 459-476.
  65. 65. Kim, I.Y., et al., Evaluation of semi-interpenetrating polymer networks composed of chitosan and poloxamer for wound dressing application. International Journal of Pharmaceutics, 2007. 341(1-2): p. 35-43.
  66. 66. Nordtveit, R.J., K.M. Varum, and O. Smidsrod, Degradation of partially N-acetylated chitosans with hen egg white and human lysozyme. Carbohydrate Polymers, 1996. 29(2): p. 163-167.
  67. 67. Tomihata, K. and Y. Ikada, In vitro and in vivo degradation of films of chitin and its deacetylated derivatives. Biomaterials, 1997. 18(7): p. 567-575.
  68. 68. Pangburn, S.H., P.V. Trescony, and J. Heller, Lysozyme degradation of partially deacetylated chitin, its films and hydrogels. Biomaterials, 1982. 3(2): p. 105-108.
  69. 69. H. Rosen, J.K., K. Leong, R. Langer., ed. Controlled Release Systems: Fabrication Technology. 1988, CRC Press. 83.
  70. 70. Wang, J.W. and M.H. Hon, Biodegradation behavior and cytotoxicity of the composite membrane composed of β-dicalcium pyrophosphate and glucose mediated (polyethylene glycol/chitosan). Journal of Materials Science: Materials in Medicine, 2004. 15(2): p. 129-136.
  71. 71. Saneinejad, S. and M.S. Shoichet, Patterned glass surfaces direct cell adhesion and process outgrowth of primary neurons of the central nervous system. Journal of Biomedical Materials Research, 1998. 42(1): p. 13-19.
  72. 72. Zielinski, B., Chitosan as a matrix for mammalian cell encapsulation. Biomaterials, 1994. 15: p. 1049-56.
  73. 73. Davidson, R.L., K.A. O'Malley, and T.B. Wheeler, Polyethylene glycol-induced mammalian cell hybridization: Effect of polyethylene glycol molecular weight and concentration. Somatic Cell and Molecular Genetics, 1976. 2(3): p. 271-280.
  74. 74. P.Broussignac,Chimie et Industrie-Genie Chimique 1968 : 99,1241.
  75. 75. Y. Araki , E. Ito, A pathway of chitosan formation in Mucro rouxii. Enzymatic deacetylation of chitin, European Journal of Biochemistry 1975 : 55,71.
  76. 76. T. Chandy and C. P. Sharma, Chitosan(as a biomaterial. Biomaterials Artificial Cells and Artificial Organs 1990 : 18, 1.
  77. 77. Chin-San Wu. Performance of an Acrylic Acid Grafted Polycaprolact-one/Starch Composite:Characterization and Mechanical Properties. Journal of Applied Polymer Science 2003;89:2888-2895.
  78. 78. Hong Zhang, Megan Oh, Christin Allen, and Eugenia Kumacheva, Monodisoerse Chitosan Nanoparticle for Mucosal Drug Delivery. Biomacromolecules 2004, 5 : 2461-2468.
  79. 79. Mi F. L., S. S. Shyu, 1999, “Chitosan –polyelectrolyte complexation for the preparation of gel beads and controlled release of anticancer drug. I. Effect of phosphorous polyelectrolyte complex and enzymatic hydrolysis of polymer.”,J. of Applied Polymer Sci., vol. 74, pp. 1868-1879.
  80. 80. Chitin and Chitosan Nature ,Technology,Application P8-10,100-110
  81. 81. R.G. Craig, J.M. Powers. Restorative dental materials. Mosby Inc.2002; 11thed.: 4-17.
  82. 82. R.L. Brown. Dental filling material comprising vinyl silane treated fused silica and a binder consisting of the reaction product of bis phenol and glycidyl acrylate. US Patent 1962; US 3066112.
  83. 83. R.G. Craig, J.M. Powers, J.C. Wataha. Dental materials properties and manipulation. Mosby Inc. 2000; 7th ed.: 59.
  84. 84. R.G. Craig, J.M. Powers. Restorative dental materials. Mosby Inc. 2002; 11th ed.: 237-244.
  85. 85. K.H. Chung. The relationship between composition and properties of posterior resin composites. J. Dent. Res. 1990; 69: 852-856.
  86. 86. J. Manhart, K.H. Kunzelmann, H.Y. Chen, R. Hickel. Mechanical properties of new composite restorative materials. J. Biomed. Materi. Res. 2000; 53:353-361.
  87. 87. S. B. Mitra, S.Wu, B.N. Holmes. An application of nanotechnology in advanced dental materials. JADA 2003; 134: 1382-1390.
  88. 88. D. B. Boyer, Y. Chalkley, K.C. Chan. Correlation between strength of bonding to enamel and mechanical properties of dental composites. J. Biomed. Materi. Res. 1982; 16:775-783.
  89. 89. G. Schottner. Hybrid sol-gel-derived polymers: applications of multifunctional materials. Chem. Mater. 2001; 13: 3422-3435.
  90. 90. B.L. Elodie, L. Jacques. Encapsulation of inorganic particles by dispersion polymerization in polar media 1. silica nanoparticles encapsulated by polystyrene. J. Colloid Interface Sci. 1998; 197: 293-308.
  91. 91. I. sondi, T.H. Fedynyshyn, R. Sinta, E. Matijevic. Encapsulation of nanosized silica by in situ polymerization of tert-butyl acrylate monomer. Langmuir 2000; 16: 9031-9034.
  92. 92. D.A. Tilbrook, R.L. Clarke, N.E. Howle, M. Braden. Photocurable epoxy-polyol matrices for use in dental composites I. Biomaterials 2000; 21: 1743-1753.
  93. 93. Y.H. Bağis, F.A. Rueggeberg. Effect of post-cure temperature and heat duration on monomer conversion of photo-activated dental resin composite. Dent. Mater. 1997; 13:228-232.
  94. 94. H. Tarumi, S. Imazato, A. Ehare, S. Kato, N. Ebi, S. Ebisu. Post-irradiation polymerization of composites containing bis-GMA and TEGDMA. Dent. Mater. 1999; 15:238-242.
  95. 95. W.D. Cook. Photopolymerization kinetics of dimethacrylates using the camphorquinone/amine initiator system. Polymer 1992; 33: 600-609.
  96. 96. Q. Yu, S. Nauman, J.P. Santerre, S. Zhu. UV photopolymerization behavior of dimethacrylate oligomers with comphorquinone/Amine initiator system. J. Appl. Polym. Sci. 2001; 82: 1107-1117.
  97. 97. K.D. Ahn, D.K. Han, S.H. Lee, C.W. Lee. New aromatic tert-amines for application as photoinitiator components in photocurable dental materials. Macromol. Chem. Phys. 2003; 204: 1628-1635.
  98. 98. G. Odian. Principles of polymerization. John Wiley & Sons, Inc. 2004; 4th ed.: 198-238.
  99. 99. I. Pyszka, Z. Kucybała, J. Pączkowski. Reinvestigation of the mechanism of the free radical polymerization photoinitiation process by comphorquinone-coinitiator systems: new results. Macromol. Chem. Phys. 2004; 205: 2371-2375.
  100. 100. C.L. Davidson, Ivar A. Mjor. Advances in glass-ionomer cements. Quintessence Publishing Co, Inc. 1999: 18.
  101. 101. R.G. Craig, J.M. Powers, J.C. Wataha. Dental materials properties and manipulation. Mosby, Inc. 2000; 7th ed.: 64.
  102. 102. S. Carraher 著, 薛敬和 譯. 高分子化學. 高立出版社. 2000 ; 3rd ed.: p.367-422.
  103. 103. G. Odian. Principles of polymerization. John Wiley & Sons, Inc. 2004; 4th ed.: 285.
  104. 104. S.P. Pappas. UV curing: science and technology Vol. II. Technology Marketing Corporation. 1985: 4-22.
  105. 105. 柯清水.新世紀化工化學大辭典.正文書局有限公司.2000; 1st ed.: 7.
  106. 106. K.D. Ahn, C.M. Chung, Y.H. Kim. Synthesis and photopolymerization of multifunctional methacrylates derived from bis-GMA for dental applications. J. Appl. Polym. Sci. 1999; 71: 2033- 2037.
  107. 107. D.K. Han, K.D. Ahn, J.M. Kim, J.H. Jeong. Photopolymerizable composite resin compositions for dental restoration. US Patent 2002; US 6,339,113 B1.
  108. 108. J.E. Klee, F. Neidhart, H.J. Flammersheim, R. Mulhaupt. Monomers for low shrinking composites, 2a: Synthesis of branched methacrylates and their application in dental composites. Macromol. Chem. Phys. 1999; 200: 517–523.
  109. 109. C.M. Chung, J.G. Kim, M.S. Kim, K.M. Kim, K.N. Kim. Development of a new photocurable composite resin with reduced curing shrinkage. Dent. Mater. 2002; 18: 174-178.
  110. 110. C.M. Chung, M.S. Kim, J.G. Kim, D.O. Jang. Synthesis and photopolymerization of trifunctional methacrylates and their application as dental monomers. J. Biomed. Materi. Res. 2002; 62: 622–627.
  111. 111. J.G. Kim, C.M. Chung. Trifunctional methacrylate monomers and their photocured composites with reduced curing shrinkage, water sorption, and water solubility. Biomaterials 2003; 24: 3845–3851.
  112. 112. Y. Kim, C. K. Kim, B. H. Cho, H. H. Son, C. M. Um, O. Y. Kim. A new resin matrix for dental composite having low volumetric shrinkage. J. Biomed. Materi. Res. 2004; 70B: 82–90.
  113. 113. J. W. Kim, L. U. Kim, C. K. Kim, B. H. Cho, O. Y. Kim. Characteristics of novel dental composites containing 2,2-bis[4-(2-methoxy-3-methacryloyloxy propoxy) phenyl]propane as a base resin. Biomacromolecules 2006; 7: 154-160.
  114. 114. J.D. Wright, N.A. Sommerdijk. Sol-gel materials: chemistry and applications. Taylor & Francis Books Ltd. 2003: 1-8.
  115. 115. 蔣孝澈.溶凝膠製作與應用專輯. 化工1999; 46: 12.
  116. 116. L.L. Hench, J. K. West. The sol gel process. Chem. Rev. 1990; 90: 32-72.
  117. 117. E. Matijević. Ralph K. Iler Award: uniform inorganic colloid dispersion, achievements and challenges. Langmuir 1994; 10: 8-16.
  118. 118. W. Stober, A. Fink, E. Bohn. Controlled growth of monodisperse silica spheres in the micron size range. J. Colloid Interface Sci. 1968; 26: 62-69.
  119. 119. J.D. Wright, N.A. Sommerdijk. Sol-gel materials: chemistry and applications. Taylor & Francis Books Ltd. 2003: 15-23.
  120. 120. C. J. Brinker, G. W. Scherer. Sol-gel Science: the physics and chemistry of sol-gel processing. Academic Press, Inc. 1990: 123.
  121. 121. C. J. Brinker, G. W. Scherer. Sol-gel Science: the physics and chemistry of sol-gel processing. Academic Press, Inc. 1990:109.
  122. 122. C. J. Brinker, G. W. Scherer. Sol-gel Science: the physics and chemistry of sol-gel processing. Academic Press, Inc. 1990: 102.
  123. 123. U. Jeong, Y. Wang, M. Ibisate, Y. Xia. Some new developments in the synthesis, functionalization, and utilization of monodisperse colloidal spheres. Adv. Funct. Mater. 2005; 15: 1907-1921.
  124. 124. C. J. Brinker, G. W. Scherer. Sol-gel Science: the physics and chemistry of sol-gel processing. Academic Press, Inc. 1990: 277-284.
  125. 125. P. Judeinstein, C. Sanchez. Hybrid organic-inorganic materials: a land of multidisciplinarity. J. Mater. Chem. 1996; 6: 511-525.
  126. 126. 詹佳樺. 溶膠-凝膠法製備聚甲基丙烯酸甲酯 / 二氧化矽混成體之研究. 國立中央大學化學工程研究所碩士論文 2001.
  127. 127. 林進益. 溶膠-凝膠/有機-無機混成高分子材料發展趨勢. 化工資訊月刊1999; 13: 7-16.
  128. 128. C. Sanchez, B. Julian, P. Belleville, M. Popall. Applications of hybrid organic-inorganic nanocomposites. J. Mater. Chem. 2005; 15: 3559-3592.
  129. 129. N. Bialas, H. Hocker, M. Marschner, W. Ritter. 13C NMR studies on the relative reactivity of isocyanate groups of isophorone diisocyanate isomers. Macromol. Chem. Phys. 2003; 191: 1843-1852.
  130. 130. E.K. Viljanen, L.V. Lassila, M. Skrifvars, P.K. Vallittu. Degree of conversion and flexural properties of a dendrimer/methyl methacrylate copolymer: design of experiments and statistical scerrning. Dent. Mater. 2005; 21: 172-177.
  131. 131. R.L. Sakaguchi, A. Versluis, W.H. Douglas. Analysis of strain gage method for measurement of post-gel shrinkage in resin composites. Dent. Mater. 1997; 13: 233-239.
  132. 132. S. Carraher 著, 薛敬和 譯. 高分子化學. 高立出版社. 2000; 3rd ed.: p.38.
  133. 133. R.E.L. Palacio, C.A.d.C. Zavaglia. The monomeric formulation optimization of dental composite: mechanical and kinetic studied. Artif. Organs 2003; 27: 419-423.
  134. 134. K.S. Chou, C.C. Chen. Preparation and charaterization of monodispersed silica colloids. Adv. in Tech. of Mat. and Mat. Proc. J. (ATM) 2003; 5-1: 31-35.
  135. 135. B.D. Bowen, N. Epstein. Production of monodisperse colloidal silica spheres: effect of temperature. J. Colloid Interface Sci. 1987; 118: 290-293.
  136. 136. D. Nagao, E. Mine, Y. Kobayashi, M. Konno. Synthesis of silica particles in the hydrolysis of tetraethyl orthosilicate with amine catalysts. J. Chem. Eng. Jpn. 2004; 37: 905-907.
  137. 137. C. J. Brinker, G. W. Scherer. Sol-gel Science: the physics and chemistry of sol-gel processing. Academic Press, Inc. 1990: 270-275.
  138. 138. J. D. Cho, H.T. Ju, J.W. Hong. Photocuring kinetics of UV-initiated free-radical photo-polymerizations with and without silica nonoparticles. J. Polym. Sci., A, Polym. Chem. 2005; 43: 658-670.
  139. 139. 胡德. 高分子物理與機械性質 (下). 國立編譯館 1990; 1st ed.: 87-89.
  140. 140. R. W. Phillips 著, 高資彬, 翁秀和 譯. 牙科材料學. 合記出版社 1977; 1st ed.: p.34.
  141. 141. FDA. Dental composites pre-market notification: Guidance 1 for industry and FDA staff. FDA 1998; 11: 27.
  142. 142. S. Carraher 著, 薛敬和 譯. 高分子化學. 高立出版社2000 ; 3rd ed.: p.55.
  143. 143. M. Atai, D.C. Watts, Z. Atai. Shrinkage strain-rates of dental resin-monomer and composite systems. Biomaterials 2005; 26: 5010-5020.
  144. 144. J. Manhart, K.H. Kunzelmann, H.Y. Chen, R. Hickel. Mechanical properties of new composite restorative materials. J. Biomed. Materi. Res. 2 000; 53: 353-361.
  145. 145. Operation instructions of Palfique Estelite. Tokuyama Dental Corporation 2003; 2nd ed.
  146. 146. Instructions for use 3MTM FiltekTM P60 Posterior Restorative. 3M Dental Products Laboratory 1998.