Title

土壤水分移動與植生根系對邊坡穩定之研究

Translated Titles

A Study of Soil Water Movement and Root System for Unsaturated Slope Stability

DOI

10.6342/NTU.2008.01554

Authors

馬國宸

Key Words

邊坡穩定 ; 土壤水分 ; 安全係數 ; 生態工法 ; Slope stability ; Soil water content ; Safety coefficient ; Ecological engineering

PublicationName

臺灣大學生物環境系統工程學研究所學位論文

Volume or Term/Year and Month of Publication

2008年

Academic Degree Category

博士

Advisor

譚義績

Content Language

繁體中文

Chinese Abstract

本文乃利用相關理論與模式分析去探討在不同自然環境條件下,植生的存在對於邊坡穩定上實際的效益,並建構了一套部分飽和植生邊坡穩定分析模式,不僅將未飽和層之土壤水分傳輸對土壤邊坡安全係數的影響納入傳統分析法中,而且將植生根系調查資料量化成根力模式,適當地整合生物、自然環境與工程設計相互作用之機制。在邊坡穩定分析方法中,使用無限邊坡切片法、Bishop修正法及Janbu簡化法;在土壤水分傳輸方面則加入遲滯效應之影響;在根力模式中,我們利用吳正雄(1990)對台灣杉及山黃麻的根系分析結果作為基礎。進而評估不同濕鋒入滲型態與植生條件下,通過不同特性之破壞面的安全係數變化。 分析結果發現,不論邊坡坡度或破壞面的形狀特性,不同的濕鋒入滲型態或植生條件會明顯地影響安全係數的改變,故在使用傳統之邊坡穩定分析法時,應考量土壤水分傳輸與植生所產生的效應。由植生效益與破壞面深度之分析得知,台灣杉及山黃麻的根系對於較深之破壞面並無顯著的正面效益,只對淺層破壞有所助益,而山黃麻又較台灣杉能提供更多的穩定性,深破壞面反而會因為植生地上部之荷重增加導致安全係數降低。由植生設計間隔與位置之分析結果來說,植生種植密度越低,其根系對於邊坡穩定之正面效益越不明顯,而種植密度過於密集又會增加邊坡荷重與影響作物正常生長等問題。此外,增加或減少植生種植間距對於深層不穩定來說並無法有效地提升安全係數,只能藉由降低土壤含水量(地表水與地下水排水工程)或坡度來增加其穩定性;而淺層破壞則可利用適當間距的植生,提升單位面積的根系數量,有效地達到增加邊坡的穩定性。由本研究模擬結果可知,並非每種植生都適用於每個邊坡的生態工法設計上,必須經由更細密的研究分析,才能夠找出真正適用於特定邊坡上的生態工法。

English Abstract

This research established a partially saturated vegetated slope stability model combined the transportation of soil water content and root model. The paper discussed the actual benefits of the root element of the vegetation offered to the slope stability under different environment and integrated the mechanism of biomechanics, environmental, and engineering properly. In the methods of slope stability, we modified the slice method of infinite slope, Bishop’s modified method and Janbu’s simplified method. In the transportation of soil water content, the hysteresis effect is considered in the simulator. Besides, the root system of the vegetated element in this study is based on “Relations of Root System Mechanics and Slope Stability” (Wu, 1990) in which investigated root system mechanics of Taiwania cryptomerio ides and Trema orientalis (L.) Blume. Finally, the present model in this research calculated the safety coefficients of the different destruction surface in accordance with different soil water content conditions and the kinds of vegetation. The results indicated that different distributions of soil water content and the kinds of vegetation would change the safety coefficient apparently regardless of the slope gradient and the patterns of destruction surface. Therefore, the engineers should consider the transportation of soil water content and the vegetated elements when using the traditional analysis methods of slope stability. The root model of Taiwania cryptomerio ides and Trema orientalis (L.) Blume had no remarkable benefits to deeper destruction surface, but raised the safety coefficient of shallow destruction surface obviously. On the contrary, the weight of vegetative body reduced the safety coefficient of deeper destruction surface. The root system of Trema orientalis (L.) Blume is better than Taiwania cryptomerio ides in the shallow slope stabilization. The simulative results of different vegetative arrangements also showed that the planting intervals are sparser and the benefits offered to the slope stabilization are more unapparent. On the other way, the planting intervals are too close to grow normally, and the vegetation increases the loading of the slope. Besides, decreasing the soil water content of the slope or cutting down the slope gradient are effective strategy to raise the stabilization of the deeper destruction surface. Utilizing the suitable planting intervals to increase the root amount of the unit area can enhance the slope stability effectively. In conclusion, not all kinds of vegetation are suitable for some particular slopes in the design of the ecological engineering. Detailed researches and analysis are required to identify the suitable ecological engineering for a particular slope.

Topic Category 生物資源暨農學院 > 生物環境系統工程學研究所
生物農學 > 生物科學
Reference
  1. 3. Anderson, M.G. & K.S. Richards, Slope Stability -Geotechnical Engineering and Geomorphology,1987,John Willey & Sons:187-231.
    連結:
  2. 5. Bear, J. (1972), Dynamics of Fluids in Porous Media, Elsevier, New York.
    連結:
  3. 7. Beese, F., and R. R. van der Ploeg (1976), Influences of Hysteresis on Moisture Flow in An Unsaturated Soil Monolith, Soil Sci. Am. J, Vol. 40, pp. 480-484.
    連結:
  4. 8. Biot M. A. (1941), General Theory of Three-Dimensional Consolidation, J. Appl. Phys., Vol. 12, pp. 155-164.
    連結:
  5. 9. Bishop, A.W., The Use of the Slip Circle in the Stability Analysis of Earth Slope,Geotechnique,1955,5:7-17.
    連結:
  6. 10. Brooks, R. H., and A. T. Corey (1964), Hydraulic Properties of Porous Media, Colo. State Univ. Hydrology Paper No.3.
    連結:
  7. 12. Celia, M. A., E. T. Bouloutas, and R. L. Zarba (1990), A General Mass-Conservation Numerical Solution for Unsaturated Flow Equation, Water Resource Res., 26, pp. 1483- 1496.
    連結:
  8. 13. Ng C.W.W. & Q.Shi (1998), A Numerical Investigation of the Stability of Unsaturated Soil Slope Subjected Transient Seepage, Computer and Geotechnics, 22, pp. 1-28.
    連結:
  9. 14. Cai, F., K. Ugai, A. & Wakai (1998), Effects ofHorizontal Drains on Slope Stability under Rainfall by Three-Dimensional Finite Element Analysis, Computer and Geotechnics, 23, pp. 255-275.
    連結:
  10. 15. Fredlund, D.G., Anqing Xing, M.D. Fredlund, & S.L. Barbour (1995), The Relationship of the Unsaturated Soil Shear Strength to the Soil-Water Characteristic Curve, Canadian Geotechnical Journal, Vol. 32, pp. 440-448.
    連結:
  11. 16. Fredlund D.G., N.R. Morgenstern & R.A.Widger (1978), The Shear Strength of Unsaturated Soil, Canadian Geotechnical Journal, Vol. 15, pp. 313-321.
    連結:
  12. 18. Fredlund D. G. (1993), Soil Mechanics for Unsaturated Soils, John Wiley & Sons, Inc..
    連結:
  13. 19. Gallipoli, D. (2000), Constitutive and Numerical Modeling of Unsaturated Soils, PhD thesis, University of Glasgow, UK.
    連結:
  14. 20. Gillham, R. W., A. Klute, and D. F. Heermann (1976), Hydraulic Properties of a Porous Medium: Measurement and empirical representation, Soil Sci. Soc. Am. J, Vol. 40, pp. 203-207.
    連結:
  15. 21. Gray, D.H. & A.T. Leiser, Biotechnical Slope Protection and Erosion Control, Van Nostrand Reinhold C.1982. PP.37-82.
    連結:
  16. 22. Gray, D.H. & O.Harukazu, Mechnics of fiber Reinforcement in Sand, J. of Geot. Eng., 1983,109(3): 335-353.
    連結:
  17. 23. Gray D.H., Robbin B.Sotir (1996), Biotechnical and soil bioengineering slope stabilization: A practical guide for erosion control, New York: John Wiley & Sons.
    連結:
  18. 27. Iverson, R.M. & J.J. Major (1986), Groundwater Seepage Vectors and the Potential for Hillslope Failure and Debris Flow Mobilization, Water Resources Research, Vol. 22, pp. 1543-1548.
    連結:
  19. 29. Jaynes, D. B. (1984), Comparison of Soil Water Hysteresis Models, J. Hydra, Vol. 75, pp. 287-299.
    連結:
  20. 30. Jennifer, J.R. & R. Ray (1985), The Development of Multiple Seepage Faces on Layered Slopes, Water Resources Research, Vol. 21, pp. 1625-1636.
    連結:
  21. 31. King, L.G. (1965), Description of Soil Characteristics for Partially Saturated Flow, Soil Sci. Soc. Am. Proc, Vol. 29, pp. 359-362.
    連結:
  22. 32. Kool, J. B., and J. C. Parker (1987), Development and Evaluation of Close-Form Expressions for Hysteresis Soil Hydraulic Properties, Water Resources Research, Vol. 23, pp. 105-114.
    連結:
  23. 34. Ma K.C., Y.C. Tan, and C.H. Chen (2008), Effect of Hysteresis and Rainfall Intensity on Finger Dynamics, Irrigation and Drainage (In Press).
    連結:
  24. 35. Mark E.R. (1997), Slope Instability Caused by Small Variations in Hydraulic Conductivity, Journal of Geotechnical and Geoenviponmental Engineering, Vol. 123, pp. 717-725.
    連結:
  25. 36. Mark E.R. & R.M. Iverson (1992), Gravity-Driven Groundwater Flow and Slope Failure Potential 2. Effect of Slope Morphology, Material Properties and Hydraulic Heterogeneity, Water Resources Research, Vol.28, pp. 939-950.
    連結:
  26. 37. Mualem, Y. (1974), A Conceptual Model of Hysteresis, Water Resources Research, Vol.10, pp. 514-520.
    連結:
  27. 38. Mualem, Y., and G. Dagan (1975), A Dependent Domain of Capillary Hysteresis, Water Resources Research, Vol.11, pp. 452-460.
    連結:
  28. 39. Parlange, J. Y. (1976), Capillary Hysteresis and the Relationship Between Drying and Wetting Curves, Water Resources Research, Vol.12, pp. 224-248.
    連結:
  29. 40. Parlange, J. Y. (1980), Water Transport in Soils, Ann. Rev. Fluid Mech., Vol.12, pp. 224-228.
    連結:
  30. 41. Pickens, J. P., and R. W. Gillham (1980), Finite Element Analysis of Solute Transport under hysteresis Unsaturated Flow Condition, Water Resources Research, Vol.16, pp. 1071-1078.
    連結:
  31. 42. Richards, L. A. (1931), Capillary Conduction of Liquids in Porous Mediums, Physics 1: pp. 318 –333.
    連結:
  32. 43. Ross, P.J (1990), Efficient Numerical Method for Infiltration Using Richard’s Equation, Water Resources Research, Vol.26, pp. 279-290.
    連結:
  33. 45. Cho S.E. & S.R. Lee (2001), Instability of Unsaturated Soil Slopes due to Infiltration, Computer and Geotechnics, 28, pp. 185-208.
    連結:
  34. 46. Vanapalli S.K., D.G. Fredlund, D.E. Pufahl, & A.W. Clifton (1996), Model for the Prediction of Shear Strength with Respect to Soil Suction, Canadian Geotechnical Journal, Vol. 33, pp. 379-392.
    連結:
  35. 48. Tan Y.C., K.C. Ma, C.H. Chen, K.Y. Ke, and M.T. Wang (2008), A Numerical Model of Infiltration Processes for Hysteretic Flow Couple with Mass Conservation, Irrigation and Drainage (In Press).
    連結:
  36. 49. Thomas H.R. & Y. He (1997), A Coupled Heat-Moisture Transfer Theory for Deformable Unsaturated Soil and Its Algorithmic Implementation, Int. J. for Num. Meth. In Eng., Vol. 40, pp. 3421-3441.
    連結:
  37. 50. Topp, G. C. (1969), Soil Water Hysteresis Measured in a Sandy Loam Compared with the Domain Model, Soil Sci. Amer. Proc, Vol.33, pp. 645-651.
    連結:
  38. 51. van Genuchten, M. Th. (1980), A Closed-Form Equation for Predicting the Hydraulic Conductivity of Unsaturated Soils, Soil Sci.Am.J, 44, pp. 892-898.
    連結:
  39. 52. Waldron, L.J., The Shear Resistance of Root-Permeated Homogeneous and Stratified Soil,Soil Sci. SOC. AM. , 1977,41:843-849.
    連結:
  40. 53. Wu, T.H., Investigation of Landslides on Prince of Wales Island Alaska, Geotech.Eng.Rep. No.5, Dep. Civil Eng, Ohio State Universal, Columbus,1976,PP.94.
    連結:
  41. 54. Wu, T.H., W.P. Mckinnell, & D.N. Swanston, Strength of Tree Root and Landslides on Prince of Wales Island Alaska,Canadian Geotech, 1979, J.16(1):19-33.
    連結:
  42. 55. Wu, T.H. & D.N. Swanston, Risk of Landslides in Shallow Soil and It Relation to Clearcutting in Southeastern Alaska, Forest Science, 1980, 26(3):495-510.
    連結:
  43. 58. 黃漢誠、陳主惠、譚義績(2000),未飽和土壤水分遲滯效應之研究,中國農業工程學報,第46卷,第四期,第33∼47頁。
    連結:
  44. 59. 吳正雄,樹根力與坡面穩定關係之研究,中華水土保持學報,1993年,24(2):第23-37頁。
    連結:
  45. 60. 吳正雄,崩塌地草本植物根力特性之研究,中華水土保持學報,1990年,21(1),第47-54頁。
    連結:
  46. 61. 吳正雄,台灣杉根力與坡面穩定關係之研究,中華林學季刊,1991年,24(1),第27-39頁。
    連結:
  47. 62. 吳正雄,樹根力與坡面穩定關係之研究,中華水土保持學報,1993年,24(2):第23-37頁。
    連結:
  48. 64. 吳正雄,植生根力與坡面穩定關係之研究,博士論文,國立台灣大學森林學研究所,台北,1990年。
    連結:
  49. 65. 莊作權、簡宣裕,百喜草覆蓋與敷蓋對坡地土壤肥力之影響,中華水土保持學報,1978年,9(1),第57-64頁。
    連結:
  50. 66. 張俊斌、林信輝,中橫崩坍地優勢植物根力特性之研究,中華水土保持學報,1995年,26(4),第235-243頁。
    連結:
  51. 67. 張曾讜,台灣重要水土保持草類根部抗張力之研究,中華水土保持學報,1972年,3(1),第58-69頁。
    連結:
  52. 68. 張賢明、萬鑫森,覆蓋及敷蓋坡面土壤水文之影響,水土保持學報,1999年,31(1),第1-9頁。
    連結:
  53. 71. 邱彬晟、蔡東霖、楊錦釧,坡地破壞潛能模式之建立與探討,第十四屆水利工程研討會,2005年。
    連結:
  54. 72. 張德鑫、鄭正隆、林繼立,甚流現象對坡地穩定之影響,第十四屆水利工程研討會,2005年。
    連結:
  55. 74. 吳正雄,植生根力與坡面穩定關係之研究,博士論文,國立台灣大學森林學研究所,台北,1990年。
    連結:
  56. 76. 黃俊仁,苦藍盤與冬青菊在泥岩地區之根系特性與水份生理之研究,碩士論文,國立中興大學水土保持學系,台中,2001年。
    連結:
  57. 1. Alonso E.E., F. Battle, A. Gens, & A. Lloret (1988), Consolidation Analysis of Partially Saturated Soils-Application to Earth Dam Construction, Proc. of the Int. Conf. On Num. Meth. Geomechnics, pp. 1303-1308.
  58. 2. Alonso E.E., A. Lloret, , A. Gens, & D.Q. Yang (1995), Experimental Behavior of Highly Expansive Double-Structure Clay, Proc. 1st Int. Conf. Unsaturated Soils, Paris 1, pp. 11-16.
  59. 4. Bao, C.G., B.W. Gong & L.T. Zhan (1998), Properties of Unsaturated Soils and Slope Stability of Expansive Soil, USAT’98 Keynote Lecture, pp. 1-19.
  60. 6. Bear, J. (1979), Hydraulics of Groundwater, McGraw-Hill, New York.
  61. 11. Brook, R. H. and A.T. Corey (1966), Properties of Porous Media Affecting Fluid Flow, J. Irrig. Drain. Div. Am., Soc. Civ. Eng., 92(IR2), pp. 61-88.
  62. 17. Fredlund D.G., N.A. Morgenstern (1977), Stress State Variables for Unsaturated Soil, Journal of Geotechnical Engineering, ASCE, GT5, Vol. 103, pp. 441-446.
  63. 24. Gray, D.H. & W.F. Megaham, Forest Vegetation Removal and Slope Stability in the Idaho Batholith, Intermountain Forest and Range Experiment Station Research Paper Int-271,Forest Service U.S. 1981.
  64. 25. Ho, D.Y.F., D.G. Fredlund (1982), Increase in Strength due to Suction for Two Hong Kong Soils, Proceeding of ASCE Speciality Conference on Engineering and Construction in Tropical and Residual Soils, Hawaii, pp. 263-296.
  65. 26. Ibrahim, H. L., and W. Brutsaert (1968), Intermittent Infiltration into Soils with Hysteresis, J. Hydraul. Div. ASCE. Vol.94, pp. 265-271.
  66. 28. Janbu, N., Application of Composite Slip Surfaces for Stability Analysis, Proc. European Conf. on Stability of Earth Slopes, Sweden, 1954,Vol.3, pp.43-49.
  67. 33. Lambe, T.W. (1958), The Engineering Behavior of Compacted Clay, Journal of Soil Mechanics and Foundation Division, ASCE, Vol. 84, SM 2, Paper no. 1655, pp. 1-35.
  68. 44. Scott, P. S., G. J. Farquhar, and N. Kouwen (1983), Hysteresis Effects on Net Infiltration, Advances in Infiltration, ASAE Publ.11-83, 163- 170, Am. Soc. Agric. Eng., St. Joseph, Mich.
  69. 47. Spierenburg S.E.J. & van Esch JM. (1995), Slope Stability During Infiltration, Proc. of Int. Conf. on Unsaturated Soils, Paris, pp. 309-314.
  70. 56. Yao Sun (1995), A Study on Stability Analysis of Shallow Layer Slope due to Raining Permeation, Proc. of Int. Conf. on Unsaturated Soils, Paris, pp. 315-320.
  71. 57. 王銘燦(2002),遲滯土壤水分傳輸數值模式之研究,國立台灣大學生物環境系統工程研究所碩士論文。
  72. 63. 吳正雄、陳信雄,森林植生根力應用在崩塌地處理上之研究,中華林學季刊,1989年,22(4),第3-19頁。
  73. 69. 郭俊傑、顏正平,環境因子對百喜草生長之影響,水土保持學報,1988年,20,第39-58頁。
  74. 70. 林信輝,台灣生態工法應用現況與發展,2001近自然工法研討會,2001年。
  75. 73. 顏正平,水土保持木本植物根系分佈類型研究,教授升等論文,國立中興大學水土保持學系,台中,1974年。
  76. 75. 鄭泰山,水土保持草類根系之研究,碩士論文,國立中興大學水土保持學系,台中,1989年。
  77. 77. 黃信元(1999),部分飽和土壤坡地穩定動態數值分析,國立台灣大學土木工程研究所碩士論文。
  78. 78. 楊宏達,九芎植生木樁之生長與根系力學之研究,國立中興大學水土保持研究所碩士論文,2004.1
  79. 79. 李伯亨,入滲效應與土石流發生臨界雨量線之探討及應用,碩士論文,國立台北科技大學環境規劃與管理研究所,台北,2003年。
  80. 80. 陳杰宏,棲蘭林區檜木天然林根倒木根系之觀察及根倒之發生與根倒木特徵值之相關性,國立台灣大學森林學研究所碩士論文,台北,1996。
  81. 81. 鄭賢德,柳杉林各樹冠級之根系研究,碩士論文,國立台灣大學森林學研究所,台北。
  82. 82. 陳漢平(2003),降雨入滲引致邊坡破壞機制之探討-以土石流源頭為對象,國立台灣大學土木工程研究所碩士論文。
Times Cited
  1. 鐘琬婷(2011)。應用無人工佈標之近景攝影測量建立災害邊坡數值地形模型。臺北科技大學土木與防災研究所學位論文。2011。1-77。 
  2. 孫浩淳(2010)。採用根系纖維叢分析法的網路邊坡穩定程式開發。臺北科技大學土木與防災研究所學位論文。2010。1-97。 
  3. 林忠志(2009)。植生根系強度試驗及邊坡穩定分析系統之研發。臺北科技大學土木與防災研究所學位論文。2009。1-136。 
  4. 周峻暐(2009)。不同植生條件渠槽沖蝕之研究。屏東科技大學土木工程系所學位論文。2009。1-0。 
  5. 黃漢誠(2004)。未飽和層土壤水分遲滯效應之研究。臺灣大學生物環境系統工程學研究所學位論文。2004。1-133。