Title

利用氧化鋅奈米結構於紫外光感測器之應用

Translated Titles

Fabrication of highly c-axis oriented ZnO thin films for UV photodetector applications by PECVD

DOI

10.6841/NTUT.2014.00488

Authors

林煒智

Key Words

電漿輔助化學沉積系統 ; 氧化鋅 ; 歐姆接觸 ; 紫外光感測器 ; Plasma enhanced chemical vapor deposition ; Zinc oxide ; Ohmic contact ; UV detector

PublicationName

臺北科技大學製造科技研究所學位論文

Volume or Term/Year and Month of Publication

2014年

Academic Degree Category

碩士

Advisor

魏大華

Content Language

繁體中文

Chinese Abstract

本論文分為兩大部份,第一部份是利用電漿輔助化學氣相沉積系統製備鋅奈米結構於sapphire(0001)基板上,其中探討沉積溫度對於鋅奈米結構的影響。檢測結果顯示,在沉積溫度100 ℃以下製備出的樣品其形貌為薄膜狀,隨著溫度提高至175 ℃時,其形貌由薄膜轉變為鬚晶狀,所以由此可以得知沉積溫度對於鋅的形貌是有著很大的影響。第二部份是先將鋅奈米結構經由退火爐管進行450 ℃和550 ℃的退火,其檢測結果顯示經由550 ℃退火後的樣品其結晶性質較450 ℃的樣品佳,故選擇經由550 ℃退火的氧化鋅奈米結構來製備金屬-半導體-金屬結構之元件歐姆接觸,先以物理氣相沉積系統鍍上約100 nm的白金電極,接著利用微影蝕刻及舉離法製作指叉狀電極,為了讓電極與材料之間有較高靈敏性及低功率損耗,故利用快速熱退火其製程壓力為5 Torr,退火環境為氬氣,退火溫度為450 ℃、持溫時間為10分鐘。元件接續做電性檢測,發現結構為鬚晶狀的樣品有著較佳的響應,其上升時間為20.5秒,電流增益值為1.8 orders,且經由5次的開關以及相隔120秒後,穩定性以及重現性是相當好,所以本研究成功製備氧化鋅奈米結構及在紫外光檢測器之應用。

English Abstract

In the study, metallic zinc thin films were deposited onto c-cut sapphire substrates by plasma enhanced chemical vapor deposition system (PECVD) with Diethylzinc (DEZn) as precursors, after atmosphere annealing at 450 ℃and 550 ℃, metallic zinc thin films will transfer to zinc oxide phase with nanostructure such as nanorods or nanowires, and radio-frequency (RF) magnetron sputtering was used to deposit Pt top electrode onto the ZnO nanorods and nanowires. The as-deposited Pt/ZnO nanocomposite samples were then annealed at 450 ℃ in argon ambiences to obtain optimal Ohmic contacts by RTA which can prevent the efficiency loss of Pt electrodes and ZnO nanorods or nanowires. The crystal structure, surface morphology, optical properties, and wettability of ZnO nanorods and nanowires were analyzed by X-ray diffraction (XRD), field emission scanning electron microscopy (FE-SEM), atomic force microscopy (AFM), photoluminescence (PL), and water contact angle meter, respectively. Moreover, the photoconductivity of the Pt/ZnO nanocomposite was also investigated for UV photodetector application. According to the result of analysis, highly c-axis prefer orientation Zn whisker-like structure were successfully deposited by PECVD, ZnO nanorods and nanowires can be obtained during the annealing process. All the samples exhibit highly photoresponse which I-V characteristics showed the photo current to dark current contrast could almost reach 1.8 order of magnitude. As a result, the ZnO photodetector with coral-like nanostructure showed good ohmic contacts behavior and stable UV photo responsibility after 5 times switching on and off UV illumination for 120s. Also, the ZnO photodetector exhibit super-hydrophobic behavior due to self-assemble nanostructure. However, waterproof UV detectors were successfully fabricated in this research work, and it has deeply potential for ZnO multifunctional devices applications.

Topic Category 機電學院 > 製造科技研究所
工程學 > 機械工程
Reference
  1. 1. M. Izaki, S. Watase and H. Takahashi, “Low-Temperature Electrodeposition of Room-Temperature Ultraviolet-Light-Emitting Zinc Oxide”, Advanced Materials, vol. 15, 2003, pp. 2000-2002.
    連結:
  2. 2. M. Dawber, K. M. Rabe and J. F. Scott, “ Physics of thin-film ferroelectric oxides”, Rev Mod Phys, vol. 77, 2005, pp. 1083-1130.
    連結:
  3. 3. X. Wang, C.J. Summers and Z. L. Wang, “Large-Scale Hexagonal-Patterned Growth of Aligned ZnO Nanorods for Nano-optoelectronics and Nanosensor Arrays”, Nano Lett, vol. 4, 2004, pp. 423-426.
    連結:
  4. 4. Z. L. Wang and Song J, “Piezoelectric Nanogenerators Based on Zinc Oxide Nanowire Arrays”, Science, vol. 312, 2006, pp. 242-246.
    連結:
  5. 5. H. B. Sang, Y. L. Sang, J. J. Beom and I. Seongil, “Pulsed laser deposition of ZnO thin films for applications of light emission”, Applied Surface Science, vol. 154, 2000, pp. 458-461.
    連結:
  6. 6. D.C. Look, “Recent advances in ZnO materials and devices”, Materials Science and Engineering, vol. B80, 2001, pp. 383-387.
    連結:
  7. 7. Y. Chen, “Plasma assisted molecular beam exitaxy of ZnO on-plane sapphire Growth and characterization”, Journal of Applied Physics, vol. 84, 1998, pp. 3912-3918.
    連結:
  8. 9. Z. K. Tang, G. K. L. Wong, P. Yu, M. Kawasaki, A. Ohtomo, H. Koinuma and Y. Segawa. “Room-temperature ultraviolet laser emission from self-assembled ZnO microcrystallite thin film”, Applied Physics Letters, vol. 72, 1998, pp. 3270-3272.
    連結:
  9. 10. H. Arpita, B. Susanta, J. Sunirmal, B. Kallol and C. Rajib, “Development of a cost effective surface-patterned transparent conductive coating as top-contact of light emitting diodes”, Journal of Applied Physics, vol. 115, 2014, pp. 193108.
    連結:
  10. 11. S. Balasubramaniam and S. –J. Kim, “Growth of 2D ZnO Nanowall for Energy Harvesting Application”, J. Phys. Chem. C, vol. 118, 2014, pp. 8831-8836.
    連結:
  11. 12. B. J. Jin, S. H. Bae, S. Y. Lee and S. Imc, “Effects of native defects on optical and electrical properties of ZnO prepared by pulsed laser deposition”, Materials Science and Engineering, vol. B71, 2000, pp. 301-305.
    連結:
  12. 13. Y. Chen, “Plasma assisted molecular beam exitaxy of ZnO on-plane sapphire Growth and characterization”, Journal of Applied Physics, vol.84, 1998, pp. 3912-3918.
    連結:
  13. 15. Y. Nakano, T. Morikawa, T. Ohwaki and Y. Taga “Deep-level characterization of N-doped ZnO films prepared by reactive magnetron sputtering”, Applied Physics Letters, vol. 87, 2005, pp. 232104.
    連結:
  14. 16. L. -Y. Chen, W. -H. Chen, J. -J. Wang, F. C. -N. Hong and Y. -K. Su, “Hydrogen-doped high conductivity ZnO films deposited by radio-frequency magnetron sputtering”, Applied Physics Letters, vol. 85, 2004, pp. 5628-5630.
    連結:
  15. 17. L. Wang, Y. Pu, Y. F. Chen, C. L. Mo, W. Q. Fang, C. B. Xiong, J. N. Dai and F. Y. Jiang, “MOCVD growth of ZnO films on Si(1 1 1) substrate using a thin AlN buffer layer”, Journal of Crystal Growth, vol. 284, 2005, pp. 459-463.
    連結:
  16. 18. B. P. Zhanga, K. Wakatsukia,b, N. T. Binha, N. Usamic and Y. Segawa, “Effects of growth temperature on the characteristics of ZnO epitaxial films deposited by metalorganic chemical vapor deposition”, Thin Solid Films, vol. 449, 2004, pp. 12-19.
    連結:
  17. 19. W. Xu, Z. Ye, T. Zhou, B. Zhao, L. Zhu and J. Huang, “Low-pressure MOCVD growth of p-type ZnO thin films by using NO as the dopant source”, Journal of Crystal Growth, vol. 265, 2004, pp. 133-136.
    連結:
  18. 20. G. Malandrino, M. Blandino, M. E. Fragala, M. Losurdo and G. Bruno, “Relationship between Nanostructure and Optical Properties of ZnO Thin Films”, J. Phys. Chem. C, vol. 112, 2008, pp. 9595-9599.
    連結:
  19. 21. Z. Xiao, Y. Liu, J. Zhang, D. Zhao, Y. Lu, D. Shen and X. Fan, “Electrical and structural properties of p-type ZnO:N thin films prepared by plasma enhanced chemical vapour deposition”, Semiconductor science and technology, vol. 20, 2005, pp. 796-800.
    連結:
  20. 22. B. S. Li, Y. C. Liu, Z. Z. Zhi, D. Z. Shen, Y. M. Lu, J. Y. Zhang and X. W. Fan, “The photoluminescence of ZnO thin films grown on Si (1 0 0) substrate by plasma-enhanced chemical vapor deposition”, Journal of Crystal Growth, vol. 240, 2002, pp. 479-483.
    連結:
  21. 23. M. D. Barankin, E. Gonzalez II, A. M. Ladwig and R. F. Hicks, “Plasma-enhanced chemical vapor deposition of zinc oxide at atmospheric pressure and low temperature”, Solar Energy Materials & Solar Cells, vol. 91, 2007, pp. 924-930.
    連結:
  22. 24. K. Haga, M. Kamidaira, Y. Kashiwaba, T. Sekiguchi and H. Watanabe, “ZnO thin films prepared by remote plasma-enhanced CVD method”, Journal of Crystal Growth, vol. 214/215, 2000, pp. 77-80.
    連結:
  23. 25. J. Sun, D. A. Mourey, D. Garg and T. N. Jackson, “Boron-Doped Plasma Enhanced Chemical Vapor Deposition of ZnO Thin Films”, Electrochemical and Solid-State Letters, vol. 11, 2008, pp. D47-D49.
    連結:
  24. 26. K. Sakurai, M. Kanehiro, K. Nakahara, T. Tanabe, S. Fujita, and S. Fujita, “Effects of oxygen plasma condition on MBE growth of ZnO”, Journal of Crystal Growth, vol. 209, 2000, pp. 522-525.
    連結:
  25. 27. T. E. Murphy, S. Walavalkar and J. D. Phillips, “Epitaxial growth and surface modeling of ZnO on c-plane Al2O3”, Applied Physics Letters, vol. 85, 2004, pp. 6338-6339.
    連結:
  26. 28. Y. Chen, D. M. Bagnall, H. –J. Koh, K. –T. Park, K. Hiraga, Z. Zhu and T. Yao, “Plasma assisted molecular beam epitaxy of ZnO on c -plane sapphire: Growth and characterization”, Journal of Applied Physics, vol. 84, 1998, pp. 3912-3918.
    連結:
  27. 29. H. Kumano, A. A. Ashrafi, A. Ueta, A. Avramescu and I. Suemune, “Luminescence properties of ZnO films grown on GaAs substrates by molecular-beam epitaxy excited by electron-cyclotron resonance oxygen plasma”, Journal of Crystal Growth, vol. 214/215, 2000, pp. 280-283.
    連結:
  28. 30. E. M. Kaidashev, M. Lorenz, H. von Wenckstern, A. Rahm, H.-C. Semmelhack, K.-H. Han, G. Benndorf, C. Bundesmann, H. Hochmuth and M. Grundmann, “High electron mobility of epitaxial ZnO thin films on c-plane sapphire grown by multistep pulsed-laser deposition”, Applied Physics Letters, vol. 82, 2003, pp. 3901-3903.
    連結:
  29. 31. M. –S. Oh, S. –H. Kim and T. –Y. Seong, “Growth of nominally undoped p-type ZnO on Si by pulsed-laser deposition”, Applied physics letters, vol. 87, 2005, p. 122103.
    連結:
  30. 33. P. Puspharajah and S. Radhakrishna, “Transparent conducting lithium-doped nickel oxide thin films by spray pyrolysis technique”, J. Mater. Sci., vol. 32, 1997, pp. 3001-3006.
    連結:
  31. 34. G. J. Exarhos and S. K. Sharma, “Influence of processing variables on the structure and properties of ZnO films”, Thin Solid Films, vol. 270, 1995, pp. 27-32.
    連結:
  32. 35. 吳慶泰,利用脈衝雷射沉積法製備氧化鋅薄膜及特性研究,碩士論文,國立臺北科技大學,台北,2006。
    連結:
  33. 38. A. Marcu, L. Trupina, R. Zamani, J. Arbiol, C. Grigoriu and J. R. Morante, “Catalyst size limitation in vapor–liquid–solid ZnO nanowire growth using pulsed laser deposition,” Thin Solid Films, vol. 520, 2012, pp. 4626-4631.
    連結:
  34. 39. K. Govatsi, A. Chrissanthopoulos, V,Dracopoulos and S. N. Yannopoulos, “The influence of Au film thickness and annealing conditions on the VLS-assisted growth ofZnO nanostructures,” Nanotechnology, vol. 25, 2014, pp. 215601.
    連結:
  35. 40. K. Tai, K. Sun, B. Huang and S. J. Dillon, “Catalyzed oxidation for nanowire growth,” Nanotechnology, vol. 25 , 2014, pp. 145603.
    連結:
  36. 41. H. Simon, T. Krekeler, G. Schaan and W. Mader, “Metal-seeded growth mechanism of ZnO nanowires,” Crystal Growth and Design, vol. 13, 2013, pp. 572-580.
    連結:
  37. 42. N. I. Rusli, M. Tanikawa, M. R. Mahmood, K. Yasui and A. M. Hashim, “Growth of high-density zinc oxide nanorods on porous silicon by thermal evaporation,” Materials, vol. 5, 2012, pp. 2817-2832.
    連結:
  38. 43. D. Sharma, B. S. Kaith and J. Rajput, “Single step in situ synthesis and optical properties of polyaniline/ZnO nanocomposites,” The Scientific World Journal, vol. 2014, 2014, pp. 904513.
    連結:
  39. 44. S. K. Lim, S. H. Hong, S. H. Hwang, S. Kim and H. Park, “Characterization of Ga-doped ZnO Nanorods Synthesized via Microemulsion Method,” Journal of Materials Science and Technology, vol. 29, 2013, pp. 39-43.
    連結:
  40. 45. J. Chun and J. Lee, “Various synthetic methods for one-dimensional semiconductor nanowires/nanorods and their applications in photovoltaic devices,” European Journal of Inorganic Chemistry, vol. 2010, 2010, pp. 4251-4263.
    連結:
  41. 46. Z. Feng, Q. Zhang, L. Lin, H. Guo, J. Zhou and Z. Lin, “〈0001〉-preferential growth of CdSe nanowires on conducting glass: Template-free electrodeposition and application in photovoltaics,” Chemistry of Materials, vol. 22, 2010, pp. 2705-2710.
    連結:
  42. 48. O. I. Mićić, J. Sprague, Z. Lu and A. J. Nozik, “Highly efficient band‐edge emission from InP quantum dots,” Applied Physics Letters, vol. 68, 1996, pp. 3150-3152.
    連結:
  43. 49. H. Ohta, K. Kawamura, M. Orita, M. Hirano, N. Sarukura and H. Hosono, “Current injection emission from transparent p-n junction composed of p-SrCu2-O2 / n-ZnO,” Applied Physics Letters, vol. 77, 2000, pp. 475-477.
    連結:
  44. 50. S. R. Whaley, D. S. English, E. L. Hu, P. F. Barbara and A. M. Belcher, “Selection of peptides with semiconductor binding specificity for directed nanocrystal assembly,” Nature, vol. 405, 2000, pp. 665-668.
    連結:
  45. 51. R. S. Wagner and W. C. Ellis, “Vapor‐liquid‐solid mechanism of single crystal growth,” Applied Physics Letters, vol. 4, 1964, pp. 89-90.
    連結:
  46. 52. X. Duan and C. M. Lieber, “General Synthesis of Compound Semiconductor Nanowires,” Advanced Materials, vol. 12, 2000, pp. 298-302.
    連結:
  47. 53. X. F. Duan and C. M. Lieber, “Laser-Assisted Catalytic Growth of Single Crystal GaN Nanowires,” Journal of the American Chemical Society, vol. 122, 2000, pp. 188-189.
    連結:
  48. 55. Y. W. Wang, L. D. Zhang, C. H. Liang, G. Z. Wang and X. S. Peng, “Catalytic growth and photoluminescence properties of semiconductor single-crystal ZnS nanowires,” Chemical Physics Letters, vol. 357, 2002, pp. 314-318.
    連結:
  49. 56. Y. J. Chen, J. B. Li, Y. S. Han, X. Z. Yang and J. H. Dai, “The effect of Mg vapor source on the formation of MgO whiskers and sheets,” Journal of Crystal Growth, vol. 245, 2002, pp. 163-170.
    連結:
  50. 57. Y. Wu and P. Yang, “Germanium Nanowire Growth via Simple Vapor Transport,” Chemistry of Materials, vol. 12, 2000, pp. 605-607.
    連結:
  51. 58. T. J. Trentler, K. M. Hickman, S. C. Geol, A. M. Viano, P. C. Gibbson and W. E. Buhro, “Solution-Liquid-Solid Growth of Crystalline III-V Semiconductors: An Analogy to Vapor-Liquid-Solid Growth,” Science, Vol. 270, 1995, pp. 1791-1794.
    連結:
  52. 59. E. W. Wong, P. E. Sheehan and C. M. Lieber, “Nanobeam Mechanics: Elasticity, Strength, and Toughness of Nanorods and Nanotubes,” Science, Vol. 277, 1997, pp. 1971-1975 .
    連結:
  53. 60. Y. Li, G. W. Meng, L. D. Zhang and F. Phillipp, “Ordered semiconductor ZnO nanowire arrays and their photoluminescence properties,” Applied Physics Letters, voi. 76, 2000, pp. 2011-2013.
    連結:
  54. 61. Lixin Zhang and Hanchen Huang, "Structural transformation of ZnO nanostructures," Applied Physics Letters, vol. 90, 2007, pp. 023115-1 - 023115-3.
    連結:
  55. 62. Y. Sun, D. Jason Riley and Michael N. R. Ashfold, "Mechanism of ZnO Nanotube Growth by Hydrothermal Methods on ZnO Film-Coated Si Substrates," Journal of Physical Chemistry B, vol. 110, 2006, pp. 15186-15192.
    連結:
  56. 63. O. Dulub, U. Diebold and G. Kresse, "Novel Stabilization Mechanism on Polar Surfaces: ZnO(0001)-Zn," Physical Review Letters, vol. 90, 2003, pp. 016102-1 – 016102-4.
    連結:
  57. 64. A. Wander, F. Schedin, P. Steadman, A. Norris, R. McGrath, T. S. Turner, G. Thornton and N. M. Harrison, "Stability of Polar Oxide Surfaces,"Physical Review Letters, vol. 86, 2001, pp. 3811-3814.
    連結:
  58. 65. A. E. Rakhshani, "Optoelectronic properties of p-n and p-i-n heterojunction devices prepared by electrodeposition of n-ZnO on p-Si," Journal of Applied Physics, vol. 108, 2010, pp. 094502-1 – 094502-5.
    連結:
  59. 66. B. S. Li, Y. C. Liu, D. Z. Shen, J. Y. Zhang, Y. M. Lu and X. W. Fan, "Effects of RF power on properties of ZnO thin films grown on Si (0 0 1) substrate by plasma enhanced chemical vapor deposition," Journal of Applied Physics, vol. 249, 2003, pp. 179-185.
    連結:
  60. 67. D. K. Hwang, M. S. Oh, J. H. Lim and S. J. Park, "ZnO thin films and light-emitting diodes," Journal of Physics D: Applied Physics, vol. 46, 2007, pp. R387-R412.
    連結:
  61. 68. J. J. Robbins, J. Esteban, C. Fry and C. A. Wolden, "An Investigation of the Plasma Chemistry Involved in the Synthesis of ZnO by PECVD," Journal of The Electrochemical Society, vol. 150, 2003, pp. C693-C698.
    連結:
  62. 69. Y. Dong, and L. J. Brillson, "First-Principles Studies of Metal (111)/ZnO{0001} Interfaces," Journal of electronic materials, vol. 37, 2008, pp. 743-748.
    連結:
  63. 71. J. G. Lu, S. Fujita, T. Kawaharamura, H. Nishinaka, Y. Kamada, T. Ohshima, Z. Z. Ye, Y. J. Zeng, Y. Z. Zhang, L. P. Zhu, H. P. He and B. H. Zhao, "Carrier concentration dependence of band gap shift in n-type ZnO:Al films, " Journal of Applied Physics, vol. 101, 2007, pp. 083705-1 - 083705-7.
    連結:
  64. 73. L. Liao, H. B. Lu, J. C. Li, H. He, D. F. Wang, D. J. Fu and C. Liu, "Size Dependence of Gas Sensitivity of ZnO Nanorods," Journal of Physical Chemistry C, vol. 111, 2007, pp. 1900-1903.
    連結:
  65. 75. L. Schmidt-Mende, J. L. MacManus-Driscoll, "ZnO – nanostructures, defects, and devices," Materials today, vol. 10, 2007, pp. 40-48.
    連結:
  66. 76. H. S. Kang, J. S. Kang, S. S. Pang, E. S. Shim and S. Y. Lee , “Variation of Light Emitting Properties of ZnO Thin Films Depending on Post-annealing Temperature”, Materials Science and Engineering B, vol.102, 2003, pp.313-316.
    連結:
  67. 78. 謝嘉民,賴一凡,林永昌,枋志堯,光激發螢光量測的原理、架構及應用,奈米通訊,第十二卷,第二期,2005,第28-39頁。
    連結:
  68. 79. X. T. Zhang, Y. C. Liu, Z. Z. Zhi, J. Y Zhang, Y. M Lu, D. Z. Shen, W. Xu, X. W. Fan and X. G. Kong, “Temperature dependence of excitonic luminescence from nanocrystalline ZnO films”, J. Lumin., vol. 99, 2002, pp. 149–154.
    連結:
  69. 81. B. X. Lin, Z.X. Fu and Y. B. Jia, “Green luminescent center in undoped zinc oxide films deposited on silicon substrates” Applied Physics Letters, vol. 79, 2001, pp. 943-945.
    連結:
  70. 82. E. G. Bylander, “Surface Effect on the Low-energy Cathodoluminescence of Zinc Oxide”, Journal of Applied Physics, vol. 49, 1978, pp. 1188-1195.
    連結:
  71. 84. 張家豪、魏鴻文、翁政輝、柳克強、李安平、寇崇善、吳敏文、曾錦清、蔡文發、鄭國川, 電漿源原理與應用之介紹, 物理雙月刊,第二十八卷,第二期,2006。
    連結:
  72. 90. G. Zaccanti and P. Bruscaglioni, "Deviation from the Lambert-Beer Law in the Transmittance of a Light Beam Through Diffusing Media: Ezperimental Results, " Journal Modern Optics, vol. 35, 1988, pp. 229-242.
    連結:
  73. 93. M. Sze, D. J. Coleman, JR. and A. Loya, "Current Transport in Metal-Semiconductor-Metal (MSM) structures," Solid-State Electronics, vol. 14, 1971, pp. 1209-1218.
    連結:
  74. 94. J. Ye, S. Gu, S. Zhu, S. Liu, W. Liu, X. Zhou, L. Hu, R. Zhang, Y. Shi and Y. Zheng, “Comparative study of diethylzinc and dimethylzinc for the growth of ZnO”, Journal of Crystal Growth, vol. 274, 2005, pp. 489-494.
    連結:
  75. 97. M. R. Khanlary, V. Vahedi and A. Reyhani,”Synthesis and Characterization of ZnO Nanowires by Thermal Oxidation of Thin Films at Various Temperatures.” Mplecules, vol. 17, 2012, pp. 5021-5029.
    連結:
  76. 98. X. Liu, X. H. Wu, H. Cao and R. P. H. Chang, "Growth mechanism and properties of ZnO nanorods synthesized by plasma-enhanced chemical vapor deposition ," Journal of Applied Physics, vol. 95, 2004, pp. 3141-1 – 3141-7.
    連結:
  77. 99. N. Kuroda, N. Murasaki, M. Wada and K. Nakashima, "Application of an enhanced luminol chemiluminescence reaction using 4‐[4,5‐di(2‐pyridyl)‐1H‐imidazol‐2‐yl]phenylboronic acid to photographic detection of horseradish peroxidase on a membrane," Journal of Luminescence, vol. 16, 2001, pp. 167-172.
    連結:
  78. 100. A. F. Kohan, G. Ceder and D. Morgan, "First-principles study of native point defects in ZnO," Physical Review B, vol. 61, 2000, pp. 15019-15027.
    連結:
  79. 101. N. Fujimura, T. Nishihara, S. Goto, J. Xu and T. Ito, "Control of preferred orientation for ZnOx films: control of self-texture," Journal of Crystal Growth, vol. 130, 1993, pp. 269- 279.
    連結:
  80. 102. J. B. K. Law and J. T. L. Thong, "Simple fabrication of a ZnO nanowire photodetector with a fast photoresponse time," Applied Physics Letters, vol. 88, 2006, pp. 133114-1 – 133114-3.
    連結:
  81. 104. Sharma, K. Sreenivas and K. V. Rao, "Analysis of ultraviolet photoconductivity in ZnO films prepared by unbalanced magnetron sputtering," Journal of Applied Physics, vol. 93, 2003, pp. 3963 – 3970.
    連結:
  82. 105. M. C. Jeong, B. Y. Oh, W. Lee and J. M. Myoung, "Optoelectronic properties of three-dimensional ZnO hybrid structure," Applied Physics Letters, vol. 86, 2005, pp. 103105-1 – 103105-3.
    連結:
  83. 106. Y. Li, F. D. Valle, M. Simonnet, I. Yamada and J. J. Delaunay, "Competitive surface effects of oxygen and water on UV photoresponse of ZnO nanowires," Applied Physics Letters, vol. 94, 2009, pp. 023110-1 – 023110-3.
    連結:
  84. 107. Y. Liu, C. R. Gorla, S. Liang, N. Emanetoglu, Y. Lu, H. Shen and M. Wraback, " Ultraviolet detectors based on epitaxial ZnO films grown by MOCVD," Journal of Electronic Materials, vol. 29, 2000, pp. 69 – 74.
    連結:
  85. 8. D. M. Bagnall, Y. F. Chen, Z. Zhu, T. Yao, S. Koyama, M. Y. Shen and T. Goto, “Optically pumped lasing of ZnO at room temperature”, Applied Physics Letters, vol. 70, 1997, pp. 2230-2232.
  86. 14. D. K. Hwang, S. H. Kang, J. H. Lim, E. J. Yang, J. Y. Oh, J. H. Yang and S. J. Park, “p-ZnO/n-GaN heterostructure ZnO light-emitting diodes”, Applied Physics Letters, vol. 86, 2005, pp. 222101.
  87. 32. J. Petersen, C. Brimont, M. Gallart, O. Cregut, G. Schmerber, P. Gilliot, B. Honerlage, C. Ulhaq-Bouillet, J. L. Rehspringer, C. Leuvrey, S. Colis, H. Aubriet, C. Becker, D. Ruch, A. Slaoui and A. Dinia1, “Structural and photoluminescence properties of ZnO thin films prepared by sol-gel process”, J. Appl. Phys., vol. 104, 2008, pp. 113539.
  88. 36. 蔡來福,以電漿輔助化學氣相沉積法室溫成長氧化鋅薄膜之研究,碩士論文,國立中央大學,桃園,2002。
  89. 37. 阮世昌,白光LED現況介紹,電子時報,2002。
  90. 47. L. Z. Pei, H. S. Zhao, W. Tan, H. Y. Yu, Y. W. Chen, C. G. Fan and Q. -F. Zhang, “Hydrothermal oxidization preparation of ZnO nanorods on zinc substrate,” Physica E: Low-Dimensional Systems and Nanostructures, vol. 42, 2010, pp. 1333-1337.
  91. 54. C. C. Chen, C. C. Yeh, C. H. Chen, M. Y. Yu, H. L. Liu, J. J. Wu, K. H. Chen, L. C. Chen, J. Y. Peng and Y. F. Chen, “Catalytic Growth and Characterization of Gallium Nitride Nanowires,” Journal of the American Chemical Society, vol. 123, 2001, pp. 2791-2798.
  92. 70. U. Ozgur, Y. I. Alivov, C. Liu, A. Teke, M. A. Reshchikov, S. Doğan, V. Avrutin, S. J. Cho and H. Morkoc, "A comprehensive review of ZnO materials and devices," Journal of Applied Physics, vol. 98, 2005, pp. 041301-1 - 041301-103.
  93. 72. C. Jagadish and S. Pearton, “Thin Films and Nanostructures: Processing, Properties, and Applications”, New York: Elsevier, 2006, pp. 3.
  94. 74. Y. M. Chiang, D. BirnieⅢ and W. D. Kingery, Physical Ceramics, New York: John Wiley, 1997.
  95. 77. K. Vanheusden, W. L. Warren, C. H. Seager, D. R. Tallant, J. A. Voigt and B. E. Gnade, “Mechanisms Behind Green Photoluminescence in ZnO Phosphor Powders”, Journal of Applied Physics, vol. 79, 1996, pp. 7983-7990.
  96. 80. J. Anderson, C. G. Van de Walle, “Oxygen vacancies in ZnO”, Applied Physics Letters, vol. 87, 2005, pp. 1-3.
  97. 83. 陳致宏,利用遠距氧電漿氧化熱蒸鍍鋅層製作氧化鋅之製程與特性研究,碩士論文,義守大學,高雄,2008。
  98. 85. Hong Xiao, “Introduction to Semiconductor Manufacturing Technology”, Prentice Hall, 2001.
  99. 86. 趙彥錚,化學氣相沉積氧化鋅磊晶薄膜於YSZ基板之研究,碩士論文,交通大學,新竹,2005。
  100. 87. 羅吉宗編著,薄膜科技與應用,臺北市:全華書局,2004。
  101. 88. 莊達人,VLSI製造技術, 高立圖書股份有限公司,1995。
  102. 89. L. Eckertova and T. Ruzicka, “Diagnostics and Applications of Thin Films”, CH.1 & 2, Institute of Physics Publishing, 1993.
  103. 91. S. M. Sze, Physics of Semiconductor Devices, New Jersey: Wiley , c1981, pp. 134.
  104. 92. S. M. Sze, Physics of Semiconductor Devices, New Jersey: Wiley , 1985, pp. 278.
  105. 95. 汪建民著,材料分析,新竹市:中國材料科學學會發行,1997。
  106. 96. R. A. Meyers, “Encyclopedia of Analytical Chemistry” (John Wiley & Sons Ltd, Chichester), 2000.
  107. 103. S. E. Ahn, J. S. Lee, H. Kim, S. Kim, B. H. Kang, K. H. Kim and G. T. Kim, "Photoresponse of sol-gel-synthesized ZnO nanorods," Applied Physics Letters, vol. 84, 2004, pp. 5022-1 – 5022-3.