Title

以六標準差結合功能模組化進行製程改善之研究-以某化學品製程為例

Translated Titles

Study on the process improvement by Six-Sigma and IDEF0 - A case study of a chemical product process

Authors

湯竣宇

Key Words

六標準差 ; 品質管理 ; IDEF0 ; Quality Management ; IDEF0 ; Six-Sigma

PublicationName

中原大學工業與系統工程研究所學位論文

Volume or Term/Year and Month of Publication

2014年

Academic Degree Category

碩士

Advisor

楊康宏

Content Language

繁體中文

Chinese Abstract

摘要 本研究應用六標準差結合IDEF0流程拆解的概念,以DMAIC模式為架構,針對個案公司化學品A製程,以客戶需求為出發點,進行個案研究探討,於各階段中應用六標準差改善工具及統計品管手法,找出問題並進行分析,尋求最佳流程改良方案。 茲將各階段的分析模式說明如下: (1) 定義階段:化學品A為半導體標準清潔劑所需原料,每日用量高,個案公司目前已有生產化學品A提供半導體客戶製程使用,但因客戶先進製程所需,故提出需求要將0.05μm particle數量降至30pcs/ml,遂成立專案改善小組,進行製程改善,將客戶需求particle定義為關鍵品質特性。另在此階段透過IDEF0進行流程拆解,找出可能影響因子並繪製特性要因圖,最後藉由C&E Matrix收斂影響因子。 (2) 量測階段:針對收斂後的影響因子進行定義,亦針對particle量測系統中的人員取樣手法進行確認,particle屬抽樣量測,每次取樣量測的量都代表母體本身,且屬破壞性量測,故透過變異數分析進行取樣手法驗證。 (3) 分析階段:定義後的影響因子,藉由製程穩定度的確認,找出製程中濾心設計不良的問題,亦藉由實驗設計,找出槽車潔淨度不佳,主要來自於槽車槽體底部。 (4) 改善階段:在分析階段中找出的關鍵性影響因子,於此階段中進行改善,改善濾心設計的問題,並藉由實驗設計綜合成本考量,找出最佳槽體洗量,最後透過合鬚圖搭配趨勢圖驗證改善的有效性。 (5) 管控階段:最後針對槽體清洗結果進行以管制圖進行管控,若不符合管制標準,將進行重工清洗,並更新此流程,藉以確保particle品質可以穩定並符合半導體客戶先進製程所需。 經過個案化學品A製程實際驗證,順利將化學品A微粒子由109±58 pcs/ml降至18.52±8.8 pcs/ml,符合半導體客戶需求,驗證了六標準結合IDEF0的成效與可行性,本個案亦可作為相關產業問題解決方案時的參考。

English Abstract

This study applies a combined research of Six Sigma and IDEF0, based on the DMAIC model to improve the chemical A process of chemical industries. The customer demand triggers this study to find out a better way to improve the process than the original process does. Six Sigma is the main frame for this study for using quality tools and statistic methods to find the root cause and do analyses for the process. The modules of analysis are as follows: (1) Define phase: Chemical A is the raw material of wet chemistry, the usage of which is higher than other chemicals. This company produces chemical A for semiconductor customers. Recently, under the requests from a customer, the chemical A particle with 0.05μm has to be controlled within 30 pcs/ml for a specific advanced production process. Consequently, my company set up a project team to improve the quality of chemical A process, which based on particle sizes to be a key quality characteristic. In this phase, team members learn and understand the process by using IDEF0 too easily. Through IDEF0 and brainstorming, we find some impact factors that could affect the particle amount, and then make a cause-and-effect on diagram. Finally, C&E Matrix is used to converge the factors. (2) Measure phase: Define the factors of convergence, and check the method of how people do sampling. We carry out sampling particle, and find out the result of samples to know the population characteristics. Because the sampling in this study is a kind of destructive test, so that we use variance analysis to verify the methods of sampling. (3) Analysis phase: Base on the result of process checking, we find out the root cause comes from the design of the filter, and through the method of experimental design, we find out another root cause comes from the cleanliness of the bottom of lorry. (4) Improve phase: Base on the results of the analysis, we improve the issue of the design of the filter. Taking the cost into consideration, before the chemical filling, we add a new process to use 100L chemical A to clean the lorry inside. Finally, we check the action is effectively or not by analyzing the trend chart and box chart. (5) Control phase: Finally, we use the I-MR chart to control the cleaning process of the lorry, if the result does not match with the standard, then we have to re-work. This action is to ensure the quality of chemical A particle can comply with the demand of semiconductor customer. Through the verification of the case study, the chemical A’s particle is reduced from 109±58 pcs/ml to 18.52±8.8 pcs/ml, which could fulfill the requirement of customers. This improvement of performance indicates that Six Sigma combined with IDEF0 works and that could be used for other industries as well.

Topic Category 電機資訊學院 > 工業與系統工程研究所
工程學 > 工程學總論
Reference
  1. 2. D. Marca, C.L. McGowan, SADT: structured analysis and design technique, McGraw-Hill, Inc., New York, 1987.
    連結:
  2. 3. 林志良, 晶圓切割製程的穩健設計-六標準差與田口實驗設計的應用, 國立高雄應用科技大學, (2003).
    連結:
  3. 6. 林榮堂, 國內中小型製造業實施ISO9000:2000年版─品質管理系統之績效研究, (2003).
    連結:
  4. 14. 羅芳琪, 以六標準差結合IDEF0分析方法進行流程改善之研究-以個案的稽核流程為例, (2014).
    連結:
  5. 16. K. S.-H., K.-J. Jang, Designing performance analysis and IDEF0 for enterprise modelling in BPR, International Journal of Production Economics, 76 (2002) 121-133.
    連結:
  6. 17. K. C.-H., R.H. Weston, A. Hodgson, K.-H. Lee, The complementary use of IDEF and ΜML modelling approaches, Safety Science 50 (2003) 1368-1376.
    連結:
  7. 20. INTERNATIONAL TECHNOLOGY ROADMAP FOR SEMICONDUCTORS, 2013.
    連結:
  8. 1. T. Pyzdek, The SIX SIGMA Handbook, McGraw-Hill, Inc., 2002.
  9. 4. 戴久永, 全面品質管理, 蒼海書局, 2005.
  10. 5. 簡聰海, 許聰鑫, 蔡志弘, 品質管理, 全威圖書有限公司, 2008.
  11. 7. G. Bruce, Six Sigma for Managers, McGraw-Hill, Inc., 2005.
  12. 8. G. Eckes, Six Sigma Execution: how the world's greatest companies live and breathe six sigma, McGraw-Hill, Inc., 2006.
  13. 9. 楊錦章, 楊錦洲, 統計學─實證與解析, 雙葉書廊有限公司, 2012.
  14. 10. 潘浙楠, 李文瑞, 品質管理, 華泰出版社, 台北市, 2003.
  15. 11. 簡聰海, 李永晃, 全面品質管理─含六個標準差, 高麗圖書有限公司, 台北縣五股鄉, 2005.
  16. 12. P.S. Pande, R.P. Neuman, R.R. Cavanagh, The Six Sigma Way Team Fieldbook, McGraw-Hill, Inc., 2002.
  17. 13. 榮霞, 王江, 劉建平, 基於IDEF模型的供應鏈戰略聯盟的構建, 昆明理工大學學報, 31 (2006) 108-112.
  18. 15. 張光旭, 應用IDEF0 方法分析產品研發流程之研究, 台北科技大學學報, 34 (2001) 171-188.
  19. 18. 張勁燕, 半導體製程設備, in, 五南圖書出版股份有限公司, 2013.
  20. 19. 丁志華, 戴寶通, 半導體廠超純水簡介, 毫微米通訊, 7 (1990) 39-41.
Times Cited
  1. 陳子謙(2016)。化學品製程品質改善之研究-去除化學品供應管路內微粒子-。中原大學工業與系統工程研究所學位論文。2016。1-50。