Title

鋁/水系統快速產氫之研究

Translated Titles

The study of rapid hydrogen generation in Al/H2O system

DOI

10.6840/CYCU.2014.00284

Authors

秦明賜

Key Words

氫氧化鋁 ; 氫氣 ; 鋁 ; 鋁水產氫系統 ; hydrogen ; aluminum water hydrogen generation system ; aluminum ; aluminum hydroxide

PublicationName

中原大學化學研究所學位論文

Volume or Term/Year and Month of Publication

2014年

Academic Degree Category

碩士

Advisor

王宏文

Content Language

繁體中文

Chinese Abstract

本研究利用硝酸鋁及氫氧化鈉製備實驗所需之氫氧化鋁,利用改變合成條件以求找到最佳製備條件之氫氧化鋁。 第一部份實驗證明以1:3.5 莫爾比(硝酸鋁:氫氧化鈉)且於冰浴下製備所得之氫氧化鋁藉由SEM、XRD、BET及活化能證實,所得到的氫氧化鋁(1:3.5 ratio Ice bath)其促進效果最好。 第二部分實驗系統以Al : Al(OH)3 : H2O = 3 : 15 : 50為最佳參數,用於快速產氫下,此系統產氫效率可於五分鐘內達到95% 以上,將此應用在燃料電池上,所產生之氫氣確實能使裝置發電。克服了鋁/水系統先前醞釀期過長之缺點,使未來在應用上能夠有更多發展空間。 第三部分實驗系統以Al : Al(OH)3 : H2O=1 : 1 : 200 為反應參數,用於恆溫下產氫,此系統雖反應速率較慢,但其反應過程較為溫和,而藉由添加少許的第二添加劑,使反應速度提升且系統仍維持在室溫下,對於鋁/水產氫系統能夠有更多不同面向的發展。

English Abstract

In this study, Al(OH)3 is synthesized using Al(NO3)3 and NaOH. By changing the synthesis conditions, i.e. Al(NO3)3/NaOH molar ratio and temperature, we are able to find the most effective Al(OH)3, a promoter for hydrogen generation of Al/water system. For the first part of this study, it is found that the Al(OH)3 which prepared by the ratio of 1 : 3.5 ratio ( Al(NO3)3 : NaOH ) and reacted in the ice bath had the best promoting effect in the Al/H2O system. And the Al(OH)3 has characterized by SEM,XRD,BET. The activation energies for hydrogen generation of Al/water using every Al(OH)3 have been calculated. The second part of this study, we used Al : Al(OH)3 : H2O = 3 : 15 : 50 as the reacting system is carried out without temperature control. Nearly 100% yield of hydrogen can be generation within 5 minutes. And the pH value plays an important role in the system . We also apply the Al/H2O system as a power source to a 2W full cell, it indeed worked. The third part of this study, a second promoter was added in the solution using Al:Al(OH)3:H2O=1:1:200 reacting system, which the temperature is controlled using a water bath. The purpose is to find out another promoter to speed up the reaction. However, all second promoters we tested in this study depressed the effectiveness of Al(OH)3, making the hydrogen generation rate slower. However, a different aspect of application of this inhibition effect has been discussed.

Topic Category 基礎與應用科學 > 化學
理學院 > 化學研究所
Reference
  1. 3. J. H. Wee, K. Y. Lee, S. H. Kim. Sodium Borohydride as the Hydrogen Supplier for Proton Exchange Membrane Fuel Cell Systems. Fuel Process. Technol. (2006), 87(9), 811-819.
    連結:
  2. 4. D. Çelik, S. Karahan, M. Zahmakıran, S. Özkar. Hydrogen generation from the hydrolysis of hydrazine-borane catalyzed by rhodium(0) nanoparticles supported on hydroxyapatite. Int. J. Hydrogen Energy (2012), 37, 5143-5151.
    連結:
  3. 5. B. Sorensen. Hydrogen and fuel cell. Elsevier Academic Press (2005), USA p13.
    連結:
  4. 7. A. Fujishima, K. Honda. Photosensitive electrode reactions. Ⅲ. Electrochemical evidence for the mechanism of the primary stage of photosynthesis. Bulletin of the Chemical Society of Japan (1971), 44(4), 1148-1150.
    連結:
  5. 8. A. Fujishima, K. Honda. Electrochemical photolysis of Water at a Semiconductor Electrode. Nature (1972), 238, 37.
    連結:
  6. 9. I. Tsuju, A. Kudo. H2 evolution from aqueous sulfite solution under visible-light irradiation over Pb and halogen-codoped ZnS photocatalysts. Journal of Photochemistry and Photobiology A: Cheistry (2003),156,249-252.
    連結:
  7. 10. C. Xing, Y. Zhang, W. Yan, L. Guo. Band structurecontrolled solid solution of Cd1-x ZnxS photocatalyst for hydrogen production by water splitting. Int. J. Hydrogen Energy (2006), 31,2018-2024.
    連結:
  8. 11. M. Sathish, B. Viswanathan, R. P. Vuswanath. Alternate synthetic strategy for the preparation of CdS nanoparticles and exploitation for water splitting. Int. J. Hydrogen Energy (2006), 31,891-898.
    連結:
  9. 12. S. Thammanoon, Y. Susumu. Enhanced photocatolytic hydrogen evolution over Pt supported on mesoporous TiO2 prepared by single-step sol-gel process with surfactant template. Int. J. Hydrogen Energy (2006), 31,786-796.
    連結:
  10. 13. B. C. Bunker, G. C. Nelson, K. R. Zavadil, F. C. Barbour, F.D. Wall, and J. P. Sullivan. Hydrogen of Passive Oxide Films on the Aluminum. J. Phys. Chem. B (2002). 106, 4705-4713.
    連結:
  11. 14. Z. Y. Deng, Y. F. Liu, Y. Tanaka, J. Ye, Y. Sakka. Modification of Al particle surfaces by γ-Al2O3 and its effect on the corrosion behavior of Al. J. Am. Ceram Soc. (2005), 88(4), 977-979.
    連結:
  12. 15. Z. Y. Deng, Y. F. Liu, Y. Tanaka, H. W. Zhang, J. H. Ye, Y. Kagawa. Temperature Effect on Hydrogen Generation by the Reaction of γ-Al2O3-Modified Al Powder with Distilled Water. J. Am. Ceram. Soc. (2005), 88(10), 2975-2977.
    連結:
  13. 16. 陳又鑛. 氫氧化鋁粉末特性對鋁與水化學產氫速率的影響.
    連結:
  14. 17. L. Schlapbach, A. Z ttel. Hydrogen-Storage Materials for Mobile Applications. Nature (2001), 414(6861), 353-358.
    連結:
  15. 18. P. Chen, Z. T. Xiong, J. Z. Luo, J. Y. Lin, K. L. Tan. Interaction of Hydrogen with Metal Nitrides and Imides. Nature (2002), 420(6913), 302-304.
    連結:
  16. 19. A. M. Seayad, D. M. Antonelli. Recent Advances in Hydrogen Storage in Metal-Containing Inorganic Nanostructures and Related Materials. Adv. Mater. (2004), 16(9–10), 765-777.
    連結:
  17. 21. M. Dornheim, N. Eigen, G. Barkhordarian, T. Klassen, R. Bormann. Tailoring Hydrogen Storage Materials Towards Application. Adv. Eng. Mater. (2006), 8(5), 377-385.
    連結:
  18. 22. S. K. Khaitan, M. Raju. Discharge dynamics of coupled fuel cell and metal hydride hydrogen storage bed for small wind hybrid systems. Int. J. Hydrogen Energy (2012), 37, 2344-2352.
    連結:
  19. 23. K. Shashikala. 15 Hydrogen Storage Materials. Functional Materials (2012), xxx, 607-638.
    連結:
  20. 26. C. Dan, R. Marge, W. Jonathan. The Fuel Cell Industry Review (2012)
    連結:
  21. 28. D. Belitskus. Reaction of Aluminum with Sodium Hydroxide Solution as a Source of Hydrogen. J. Electrochem. Soc. (1970), 117(8), 1097-1099.
    連結:
  22. 29. R. N. Domingos, R. R. Vollet. Structural changes induced by ultrasound during aging of the boehmite phase. Ultrason. Sonochem. (1997), 4, 321-323
    連結:
  23. 30. L. Zhong, Y. Zhang, F. Chen, Y. Zhang. Syntehsis of mesoporous aluumia using a recyclable methylcellulose template. Micropoprous Mesoporous Mater. (2011), 142, 740-744.
    連結:
  24. 31. X. N. Huang, C. J. Lv, Y. X. Huang, S. Liu, C. Wang, D. Chen. Effects of amalgam on hydrogen generation by hydrolysis of aluminum with water. Int. J. Hydrogen Energy (2011), 36, 15119-15124.
    連結:
  25. 32. G. Philip K, J. Charles Q, Critical evaluation of coupling particle size distribution with the shrinking core model. Chem. Eng. Sci. (2004), 2,205-210.
    連結:
  26. 33. Z. Y. Deng, W. H. Liu, W. Z. Gai, Role of Modification Agent Coverage in Hydrogen Generation by the Reaction of Al with Water. J. Am. Ceram. Soc.(2010), 93,2534-2536.
    連結:
  27. 34. W. Z. Gai, Z.Y. Deng. Effect of trace species in water on the reaction of Al with water. Journal of Power Sources.(2014), 245, 721-729.
    連結:
  28. 35. L. Soler, A. M. Candela, J. Macanás, M. Mu oz, and J. Casado. Hydrogen generation from water and aluminum promoted by sodium stannate. Int. J. Hydrogen Energy. (2010), 35,1038-1048.
    連結:
  29. 36. H. B. Dai, G. L. Ma, X. D. Kang, P. Wang. Hydrogen generation from coupling reactions of sodium borohydride and aluminum powder with aqueous solution of cobalt chloride. Catalysis Today (2011), 170, 50-55.
    連結:
  30. 37. L. Soler, A. M. Candela, J. Macanás, M. Muñoz, and J. Casado. In situ generation of hydrogen from water by aluminum corrosion in solutions of sodium aluminate. J. Power Sources (2009), 192, 21-26.
    連結:
  31. 38. T. Hiraki, S. Yamauchi, M. Iida, H. Uesugi, T. Akiyama. Process for Recycling Waste Aluminum with Generation of High-Pressure Hydrogen. Environ. Sci. Technol. (2007), 41(12), 4454-4457.
    連結:
  32. 40. U.S. Patent 6,506,360. Method for producing hydrogen. January 14 2003. Inventors: Erling Reidar Andersen, Erling Jim Andersen. Assignee: None listed.
    連結:
  33. 42. U.S. Patent 6,800,258. Apparatus for producing hydrogen. October 5 2004. Inventors: Erling Reidar Andersen, Erling Jim Andersen. Assignee: None listed.
    連結:
  34. 44. H. B. Dai, G. L. Ma, H. J. Xia, P. Wang. Reaction of aluminium with alkaline sodium stannate solution as a controlled source of hydrogen. Energy & Environmental Science (2011), 4, 2206.
    連結:
  35. 45. G. L. Ma, H. B. Dai, D. W. Zhuang, H. J. Xia, P. Wang. Controlled hydrogen generation by reaction of aluminum/sodium hydroxide/sodium stannate solid mixture with water. Int. J. Hydrogen Energy (2012), 37, 5811-5816.
    連結:
  36. 46. H. Zou, S. Chen, Z. Zhao, W. Lin. Hydrogen production by hydrolysis of aluminum. Journal of Alloys and Compounds (2013) , 578, 380–384.
    連結:
  37. 47. J. Macan s, L. Soler, A. M. Candela, M. Mu oz, J. Casado. Hydrogen generation by aluminum corrosion in aqueous alkaline solution of inorganic promoters : The AlHidrox process. Energy.(2011), 36, 2493-2501.
    連結:
  38. 48. B. Alinejad, K. Mahmoodi. A novel method for generating hydrogen by hydrolysis of highly activated aluminum nanoparticles in pure water. Int. J. Hydrogen Energy (2009), 34, 7934-7938.
    連結:
  39. 49. M. Fan, L. Sun, F. Xu. Experiment assessment of hydrogen production from activated aluminum alloys in portable generator for fuel cell applications. Water (2010), 35, 2922-2926.
    連結:
  40. 50. S. Liu, M. Q. Fan, C. Wang, Y. X. Huang, D. Chen, L.-Q. Bai, K. Y. Shu. Hydrogen generation by hydrolysis of Al-Li-Bi-NaCl mixture with pure water. Int. J. Hydrogen Energy (2012), 37,1014-1020.
    連結:
  41. 51. X. N. Huang, C. J. Lv, Y. Wang, H. Y. Shen, D. Chen, Y. X. Huang. Hydrogen generation from hydrolysis of aluminum/graphite composites with a core–shell structure. Int. J. Hydrogen Energy (2011), 37, 7457-7463
    連結:
  42. 52. X. Y, Chen, Z. W. Zhao, M.M. Hao, D. Z. Wang. Research of hydrogen generation by the reaction of Al-based materials with water. J. Power Sources. (2013), 222, 188-195.
    連結:
  43. 53. M. Q. Fan, F. Xu, L. X. Sun. Hydrogen Generation by Hydrolysis Reaction of Ball-Milled Al–Bi Alloys. Energy Fuels (2007), 21(4), 2294-2298.
    連結:
  44. 54. L. Soler, J. Macanas, M. Munoz, J. Casado. Synergistic Hydrogen Generation from Aluminum, Aluminum Alloys and Sodium Borohydride in Aqueous Solutions. Int. J. Hydrogen Energy (2007), 32, 4702-4710.
    連結:
  45. 55. A. V. Parmuzina, O. V. Kravchenko. Activation of aluminum metal to evolve hydrogen from water. Int. J. Hydrogen Energy (2008), 33, 3073-3076.
    連結:
  46. 56. M. Q. Fan, L. X. Sun, F. Xu. Feasibility study of hydrogen production for micro fuel cell from activated Al-In mixture in water. Energy (2010), 35, 1333-1337.
    連結:
  47. 57. K. S. Eom, J. Y. Kwon, M. J. Kima, H. S. Kwon. Design of Al-Fe alloys for fast on-board hydrogen production from hydrolysis. J. Mater. Chem. (2011), 21, 13047-13051.
    連結:
  48. 58. K. S. Eom, M. J. Kim, S. K. Oh, E. A. Cho, H. S. Kwon. Design of ternary Al-Sn-Fe alloy for fast on-board hydrogen production, and its application to PEM fuel cell. Int. J. Hydrogen Energy (2011), 36, 11825-11831.
    連結:
  49. 59. W. Wang, W. Chen X. M. Zhao, D. M. Chen, K. Yang. Effect of composition on the reactivity of Al-rich alloys with water. Int. J. Hydrogen Energy (2012), 37, 18672-18678.
    連結:
  50. 60. M. Q. Fan, S. Liu, C. Wang, D. Chen, K. Y. Shu. Hydrolytic Hydrogen Generation Using Milled Aluminum in Water Activated by Li, In and Zn Additives. Fuel Cells. (2012), 2, 642-648.
    連結:
  51. 61. H. Wang, Y. Chang, S. Dong, Z. Lei, Q. Zhu, P. Lou, Z. Xie. Investigation on hydrogen production using multicomponent aluminum alloys at mild conditions and tis mechanism. Int. J. Hydrogen Energy. (2013), 38, 1236-1243.
    連結:
  52. 62. X. Chen, Z. Zhao, M. Hao, D. Wang. Hydrogen generation by splitting water with Al-Li alloys. Int. J. Energy Research.(2013), 37, 1624-1634.
    連結:
  53. 63. M. Fan, L. Sun, F. Xu. Study of the controllable reactivity of aluminum alloys and their promising application for hydrogen generation. Energy Conversion and Material. (2010)
    連結:
  54. 65. M. Q. Fan, D. S. Mei, D. Chen, C. J. Lv, K. Y. Shu. Portable hydrogen generation from activated Al-Li-Bi alloys in water. Renewable Energy. (2011), 36, 3061-3067.
    連結:
  55. 66. F. Xu, L. Sun, X. Lan, H. Chu, Y. Sun, H. Zhou, F. Li, L. Yang, X. Si, J. Zhang, E. Walter, Z. Gabelica. Mechanism of fast hydrogen generation from pure water using Al-SnCl2 and Bi-doped Al-SnCl¬2 composites. Int. J. Hydrogen Energy. (2014), 39, 5514-5521.
    連結:
  56. 67. M. Q. Fan, S. Liu, W. Q. Sun, Y. Fei, H. Pan, K. Y. Shu. Controllable hydrogen generation and hydrolysis mechanism of AlLi/NaBH¬4 system activated by CoCl2 solution. Renewable Energy. (2013), 46, 203-209.
    連結:
  57. 69. Z. Y. Deng, Y. F. Liu, Y. Tanaka, J. Ye, Y. Sakka. Modification of Al particle surfaces by γ-Al2O3 and its effect on the corrosion behavior of Al. J. Am. Ceram Soc. (2005), 88(4), 977-979.
    連結:
  58. 70. Z. Y. Deng, Y. F. Liu, Y. Tanaka, H. W. Zhang, J. H. Ye, Y. Kagawa. Temperature Effect on Hydrogen Generation by the Reaction of γ-Al2O3-Modified Al Powder with Distilled Water. J. Am. Ceram. Soc. (2005), 88(10), 2975-2977.
    連結:
  59. 71. W. H. Liu, W. Z. Gai, Z. Y. Deng, J. Tang. Enhancing Hydrogen-Generation Performance of γ-Al2O3 Modified Al Powder by Ultrasonic Dispersion. J. Am. Ceram. Soc. (2012), 95, 1193-1196.
    連結:
  60. 72. X. Huang, Z. Chen, T. Gao, Q. Huang, F. Niu, L. Qin, Y. Huang. Hydrogen generation by Hydrolysis of an Al/Al2O3-Composite Powder After Heat Treatment. Energy Technology. (2013), 1, 751-756.
    連結:
  61. 73. M. K. Park, H. Y. Choi, D. H. Kim, T. J. Lee, M. Kang, W. G. Lee, H. D. Kim, J. W. Park. Purification of Al(OH)3 synthesized by Bayer process for preparation of high purity alumina as sapphire raw material. Journal of Crystal Growth. (2013), 373, 88-91.
    連結:
  62. 74. S. S. R. Tousi, G. A. Nematollahi, T. Ebadzadeh, J. A. Szpunar. Modifying aluminum-water reaction to generate nano-sized aluminum hydroxide particles beside hydrogen. Power Technology. (2013), 241, 166-173.
    連結:
  63. 75. W. Z. Gai, C. S. Fang, Z. Y. Deng. Hydrogen generation by the reaction of Al with water using oxides as catalysts. Int. J. Energy Research. (2014), 38, 918-925.
    連結:
  64. 76. C. S. Fang, W. Z. Gai, Z. Y. Deng. Al Surface Modification by a Facile Route. J. Am. Ceram. Soc. (2014), 97, 44-47.
    連結:
  65. 77. H. W. Wang, H. W. Chung, H. T. Teng, G. Z. Cao. Generation of hydrogen from aluminum and water – Effect of metal oxide nanocrystals and water quality. Int. J. Hydrogen Energy. (2011), 36, 15136-15144.
    連結:
  66. 78. B. C. Bunker, G. C. Nelson, K. R. Zavadil, J. C. Barbour, F. D. Wall, J. P. Sullivan, C. F. Windisch Jr., M. H. Engelhardt, D. R. Baer. Hydration of Passive Oxide Films on Aluminum. J. Phys. Chem. B, (2002), 106, 4705-4713.
    連結:
  67. 79. Z. Y. Deng, J. M. F Ferreira, Y. Tanaka, J. Ye. Physicochemical mechanism for the continuous reaction of γ-Al2O3-modified aluminum powder with water. J. Am. Ceram Soc. (2007), 90(5), 1521-1526.
    連結:
  68. 80. P. Dupiano, D. Stamatis, E. L. Dreizin. Hydrogen production by reacting water with mechanically milled composite aluminum-metal oxide powders. Int. J. Hydrogen Energy (2011), 36, 4781-4791
    連結:
  69. 81. H. T. Teng, T. Y. Lee, Y. K. Chen, H. W. Wang, C. Cuozhong. Effect of Al(OH)3 on the hydrogen generation of aluminum-water system. J. Power Sources. (2012), 219,16-21.
    連結:
  70. 1. 經濟部能源局, http://web3.moeaboe.gov.tw
  71. 2. 毛宗強, 氫能─21世紀的綠色能源─, 新文京出版,(2008)
  72. 6. 陳發林,呂錫民, 產氫與儲氫技術, 五南圖書出版社 (2007)
  73. 20. H. Lee, J. W. Lee, D. Y. Kim, J. Park, Y. T. Seo, H. Zeng, I. L. Moudrakovski, C. I. Ratcliffe, J. A. Ripmeester. Tuning Clathrate Hydrates for Hydrogen Storage. Nature (2005), 434(7034), 743-746.
  74. 24. 艾胥利, 氫燃料電池車乾淨上路, Scientific American (2003)
  75. 25. 楊顯整, 燃料電池應用與產業發展現況, (2012)
  76. 27. Garrison Sposito, Environmental Chemistry of Aluminum. 國立編譯館出版 (1999).
  77. 39. U.S. Patent 4,308,248. Material and method to dissociate water. December 29, 1981. Inventor: Eugene R. Anderson. Assignee: Horizon Manufacturing Corporation.
  78. 41. U.S. Patent 6,638,493, Method for producing hydrogen, October 28 2003, Inventors: Erling Reidar Andersen, Erling Jim Andersen. Assignee: None listed.
  79. 43. U.S. Patent 7,144,567. Renewable energy carrier system and method. December 5, 2006. Inventor: Erling Jim Andersen. Assignee: None listed.
  80. 64. M. Q. Fan, W. Q. Sun, D. Chen, C. J. Lv. K. Y. Shu. Microstructure Analysis and Hydrolysis Mechanism of AlLi Alloys Activated by Metal Additives for Hydrogen Generation. Journal of New Materials for Electrochemical Systems. (2011), 14, 259-264.
  81. 68. U.S. Patent 6,440,385. Hydrogen Generation from Water Split Reaction. 2002. Inventors: A. Chaklader.
  82. 82. E. Lydersen. The Solubility and Hydrolysis of Aqueous Aluminum Hydroxides in Dilute Fresh Waters at Different Temperatures. Nordic Hydrology (1990), 21, 195-204.