English Abstract
|
This investigation was carried out via a cis-Pt(NH3)2Cl2 (cisplatin) derivative, Pt(1R, 2R-dach)22+ (dach:diaminocyclohexane), and focused on the different reaction pathways, reaction conditions and sequence preferences between cisplatin and Pt(1R, 2R-dach)22+.
Under the same experiment conditions as cisplatin, the results suggested Pt(1R, 2R-dach)22+ do not follow the same mechanism as cisplatin, in forming cis-GG crosslink with DNA.
Based on variable temperature UV and CD denaturation analysis, Pt(1R, 2R-dach)22+ can react with AT-rich DNA sequences through groove binding. Based on experiments carried out under various conditions, suggested that reaction temperature about 40℃ and Pt(1R, 2R-dach)22+:DNA over 30:1 were required to promote the reaction.
Refer to UV and CD denaturation experiment of ten DNA samples of variable sequences in this work, Pt(1R, 2R-dach)22+ has only weak binding affinity to single binding site sequences, whereas double binding site sequences react almost completely with Pt(1R, 2R-dach)22+. The variable sequence studies suggested that the consensus sequences of Pt(1R, 2R-dach)22+-DNA sites are d(CXXCGXXG)2 and d(CXXCCGGXXG)2 (X=A or T) with at least 2 base pairs of A or T.
|
Reference
|
-
Takahara, P. M.; Frederick, C. A.; Lippard, S. J. J. Am. chem. Soc. 1996, 118, 12309-12321.
連結:
-
Jamieson, E. R.; Lippard, S. J. Chem. Rev. 1999, 99, 2467-2498.
連結:
-
Bernges, F.; Holler E. Nucleic Acids Res. 1991, Vol. 19, No. 7, 1483-1489.
連結:
-
Drew, H. D. K. J. Chem. Soc. 1932, 2328-2331.
連結:
-
Wheat, N. J.; Collins, J. G. J. Inorg. Biochem. 2000, 78, 313-320.
連結:
-
Nelson, D. L.; Cox, M. M. (2004) Lehninger: Principles of Biochemistry (Fourth Ed.) W. H. Freeman and Company, New York, chapter 8.
連結:
-
Fasman, G. D. (1975) CRC Handbook of Biochemistry and Molecular Biology (Third Ed.), chapter I, P.589.
連結:
-
Mergny, J.-L.; Lacroix, L. Oligonucleotides 2003, 13, 515-537.
連結:
-
蔡惠如,國立台灣師範大學化學研究所(民95)
-
Jung, Y.; Lippard, S. J. Chem. Rev. 2007, Vol. 107, No. 5, 1387-1407.
-
Wong, E.; Giandomenico, C. M. Chem. Rev. 1999, 99, 2451-2466.
-
Yang, D.; Wang, A. H.-J. Prog. Biophys. molec. Biol. 1996, Vol. 66, No. 1, 81-111.
-
Pendyala, L.; Kidani, Y.; Perez, R.; Wilkes, J.; Bemacki, R. J.; Creaven, P. J. Cancer Letters 1995, 97, 117-184.
-
Franklin, C. A.; Fry, J. V.; Collins, J. G. J. Inorg. Biochem. 1996, 35, 7541-7545.
-
Fede, A.; Labhardt, A.; Bannwarth, W.; Leupin, W. Biochem. 1991, 30, 11377-11388.
-
Watts, C. R.; Kerwin, S. M.; Kenyon, G. L.; Kuntz, I. D.; Kallick, D. A. J. Am. Chem. Soc. 1995, 117, 9941-9950.
-
Baleja, J. D.; Pon, R. T.; Sykes, B. D. Biochemistry 1990, 29, 4828-4839.
-
Eyring, H.; Liu, H.-C.; Caldwell, D. Chem. Rev. 1968, 68, 525-540.
-
Shi, S.; Yan, L.; Yang, Y.; Fisher-Shaulsky, J.; Thacher, T. J. Comput.Chem. 2003, Vol. 24, No. 9, 1059-1076.
-
Poklar, N.; Pilch, D. S.; Lippard, S. J.; Redding, E. A.; Dunham, S. U.; Breslauer, K. J. Proc. Natl. Acad. Sci. U. S. A. 1996, 93, 7606-7611.
-
Nina, B.; Koji, N,; Robert, W. W. (2000) Circular Dichroism Principles and Applications (Second Ed.), P.707.
|