Title

原子層沉積法成長單晶氧化鋅薄膜之光學與晶體結構特性研究

Translated Titles

Optical and Structural Properties of ZnO Epitaxial Films Grown by Atomic Layer Deposition

DOI

10.6842/NCTU.2012.00085

Authors

楊松

Key Words

氧化鋅 ; 光激螢光 ; 原子層沉積法 ; 基面堆疊缺陷 ; 薄膜 ; ZnO ; Photoluminescence ; Atomic Layer Deposition ; Basal Plane Stacking ; thin film

PublicationName

交通大學光電工程系所學位論文

Volume or Term/Year and Month of Publication

2012年

Academic Degree Category

博士

Advisor

謝文峰

Content Language

英文

Chinese Abstract

我們成功地利用原子層沉積法成長纖維鋅礦結構單晶氧化鋅薄膜於c-plane與m-plane藍寶石□板,並且利用X-ray繞射與穿遂式電子顯微鏡研究其晶體結構特性。 經過高溫退火處理之後的氧化鋅單晶薄膜,其晶體品質顯示明顯的改進,並發現基面堆疊缺陷(basal stacking fault)為其主要的晶體結構缺陷。我們在c-plane藍寶石□板上成長出單晶氧化鋅薄膜,其磊晶面關係為(0001){10-10}ZnO||(0001){10-10}Al2O3 ;而在m-plane 藍寶石□板上之磊晶面關係為 (10-10)<0001>ZnO||(10-10)<-12-10>Al2O3 。以光激螢光光譜觀察到以3.325 eV為中心的主要發光波段,可能來自於基面堆疊缺陷。由於基面堆疊缺陷的原子結構可視為一層非常薄的閃鋅礦晶體內嵌在纖維鋅礦結構之中,形成的基面堆疊缺陷量子井結構。我們也研究了熱退火處理對單晶氧化鋅薄膜的晶體結構特性和發光特性所造成的影響。另外,我們也透過時間解析光激螢光實驗來測定此基面堆疊缺陷量子井結構的發光機制與近能帶間隙發光的特性。我們觀察到光激載子被基面堆疊缺陷量子井結構局限後,形成量子局限激子。而此量子局限激子更持續地受到由許多局限能態所形成的局限效應所束縛。這些局限能態可能是由隨機分佈的基面堆疊缺陷之間的量子耦合效應所形成;量子耦合效應是由於局限在不同量子井中的電子之間發生波函數交疊的關係,此現象亦形成了局限能態。由於測得的氧化鋅薄膜的低施子濃度以及近能帶能隙發光並無激子遷移的現象,所以我們排除了靠近基面堆疊缺陷的施子以及離子成份濃度擾動這兩個因素形成局限能態的可能性。

English Abstract

We have successfully grown mono-crystalline ZnO epitaxial films on c-plane and m-plane sapphire substrates by using the atomic layer deposition. X-ray diffraction and transmission electron microscopy were employed to verify the structural properties of the ZnO thin films. The structure of the ZnO epi-films exhibits significantly improvement upon thermal annealing and intrinsic types of basal plane stacking faults (BSFs) are the predominant structural defects in the ZnO films after thermal treatment. The ZnO epi-films grown on the c-plane and m-plane sapphires have the epitaxial relationships of (0001){10-10}ZnO||(0001){10-10}Al2O3 and (10-10)<0001>ZnO||(10-10)<-12-10>Al2O3, respectively. The BSF is found to contribute to the emission at 3.325 eV in the photoluminescence (PL) spectra of the annealed ZnO films. This is attributed to quantum-well (QW) structure formed by the BSF, which has the thin layer of zinc blend structure embedded in the wurtzite structure ZnO layer. The influence of thermal annealing to the structural and optical properties of the ZnO epi-films was also investigated. Through the time-resolved PL, we determined the decay times of the BSF related emission and the near-band-edge (NBE) emission. The QWs formed by the BSFs are found to trap the carriers to form BSF-bound excitons. The PL measurements revel that the BSF-bound excitons are influenced by the localization effect, which consists of localization states, and these bound excitons migrate among these localization states. Such localization states are attributed to the quantum coupling effect among the random distributed BSFs; the quantum coupling effect results from the wave function overlapping of the electrons bound in QWs and leads to the localization states. Because of the obtained low donor concentration and near band emission without the phenomenon of exciton migration, we exclude the donors in the vicinity of BSFs and the alloy density fluctuation from the origins of these localization states.

Topic Category 電機學院 > 光電工程系所
工程學 > 電機工程
Reference
  1. [1] A. Tsukazaki, A. Ohtomo, T. Onuma, M. Ohtani, T. Makino, M. Sumiya, K. Ohtani, S. F. Chichibu, S. Fuke, Y. Segawa, H. Ohno, H. Koinuma, M. Kawasaki, Nat. Mater. 4, 42 (2005)
    連結:
  2. [3] A. Smith, Thin Solid Films 376, 47 (2000)
    連結:
  3. [6] J. Jo, O. Seo, H. Choi, B. Lee, Appl. Phys. Express 1, 041202 ( 2008)
    連結:
  4. [7] I. T. Tang, Y. C. Wang, W. C. Hwang, C. C. Hwang, N. C. Wu, M. P. Houng, Y. H. Wang, J. Cryst. Growth 252, 190(2003)
    連結:
  5. [10] J. C. Johnson, H. Yan, R. D. Schaller, L. H. Haber, R. J. Saykally, and P. D. Yang, J. Phys. Chem. B 105, 11387 (2001)
    連結:
  6. [11] S. Monticone, R. Tufeu, and A. V. Kanaev, J. Phys. Chem. B 102, 2854 (1998)
    連結:
  7. [12] Z. L. Wang, J. Phys.: Condens. Matter 16, R829 (2004)
    連結:
  8. [15] M. M. C. Chou, L. Chang, H.-Y. Chung, T.-H. Huang, J.-J. Wu, and C.-W. Chen, J. Crystal Growth 308, 412 (2007)
    連結:
  9. [17] P. D. Ye, G. D. Wilk, B. Yang, J. Kwo, S. N. G. Chu, S. Nakahara, H.-J. L. Gossmann, J. P. Mannaerts, M. Hong, K. K. Ng, and J. Bude, Appl. Phys. Lett. 83, 180 (2003)
    連結:
  10. [20] D. M. King, X. Liang, C. S. Carney, L. F. Hakin, P. Li, and A. W. Weimer, Adv. Funct. Mater. 18, 607 (2008)
    連結:
  11. [22] S. Yang, B. H. Lin, W.-R. Liu, J.-H. Lin, C.-S. Chang, C.-H. Hsu, and W. F. Hsieh, Cryst. Growth Des. 9, 5184 (2009)
    連結:
  12. [23] S. Yang, B. H. Lin, C. C. Kuo, H. C. Hsu, W.-R. Liu, M. O. Eriksson, P.-O. Hotz, C.-S. Chang, C.-H. Hsu, and W. F. Hsieh, Cryst. Growth Des. 12, 4745 (2009)
    連結:
  13. [29] T. Moriyama, S. Fujita, Jpn. J. Appl. Phys. 44, 7919– 7921 (2005)
    連結:
  14. [31] T. Kogure, and Y. Bando, J. Electron Microsc. 47, 7903 (1993)
    連結:
  15. [34] J. W. Elam, and S. M. George, Chem. Mater. 15, 1020 (2003)
    連結:
  16. [35] H. Yuan, B. Luo, S. A. Campbell, and W. L. Gladfelter, Electrochemical and Solid-State Letters 14, H181 (2011)
    連結:
  17. [5] Y. T. Rebane, Y. G. Shreter, M. Albrecht, Phys. Status Solidi A 164, 141 (1997).
    連結:
  18. [10] C. Stampfl and Chris G. Van de Walle, Phys. Rev. B. 57, R15052 (1998).
    連結:
  19. [11] Stampfl, C.; Van de Walle, C. G., Phys. Rev. B 1998, 57, R15052.
    連結:
  20. [3] Smith, A., Thin Solid Films 2000, 376, 47-55.
    連結:
  21. [6] Jo, J.; Seo, O.; Choi, H.; Lee, B., Appl. Phys. Express 2008, 1, 041202.
    連結:
  22. [7] Tang, I. T.; Wang, Y. C.; Hwang, W. C.; Hwang, C. C.; Wu, N. C.; Houng, M. P.; Wang, Y. H., J. Cryst. Growth 2003, 252, 190.
    連結:
  23. [18] Lim, J.; Lee, C., Thin Solid Films 2007, 515, 3335.
    連結:
  24. [24] Koyama, T.; Chichibu, S. F., J. Appl. Phys. 2004, 95, 7856.
    連結:
  25. [33] Stampfl, C.; Van de Walle, C. G., Phys. Rev. B 1998, 57, R15052.
    連結:
  26. [48] T. Schmidt, K. Lischka, W. Zulehner, Phys. Rev. B. 45, 8989 (1992).
    連結:
  27. [50] Y. T. Rebane, Y. G. Shreter, M. Albrecht, Phys. Status Solidi A 164, 141 (1997).
    連結:
  28. [58] K. S. Ramaiah, Y. K. Su, S. J. Chang, B. Kerr, H. P. Liu, I. G. Chen, Appl. Phys. Lett. 84, 3307 (2004).
    連結:
  29. [2] Jiao, S. J.; Zhang, Z. Z.; Lu, Y. M.; Shen, D. Z.; Yao, B.; Zhang, J. Y.; Li, B. H.; Zhao, D. X.; Fan, X. W.; Tang, Z. K., Appl. Phys. Lett. 2006, 88, 031911
    連結:
  30. [7] Moriyama, T.; Fujita, S., Jpn. J. Appl. Phys. 2005, 44, 7919– 7921.
    連結:
  31. [9] Ho, Y. T.; Wang, W. L.; Peng, C. Y.; Chen, W. C.; Liang, M. H.; Tian, J. S.; Chang, L., Thin Solid Films 2010, 518, 2988–2991.
    連結:
  32. [10] Wang, W. L.; Ho, Y. T.; Chiu, K. A.; Peng, C. Y.; Chang, L., J. Cryst. Growth 2010, 312, 1179–1182.
    連結:
  33. [19] Stampfl, C.; Van de Walle, Chris G., Phys. Rev. B 1998, 57, R15052.
    連結:
  34. [23] B. H. Lin, W.-R. Liu, C. Y. Lin, S. T. Hsu, S. Yang, C. C. Kuo, C.-H. Hsu, W. F. Hsieh, F. S.-S. Chien, and C. S. Chang, Appl. Mater. Inter. 2012, 4, 5333
    連結:
  35. [12] C. Gourdon, and P. Lavallard, Phys. Stat. Sol. 153, 641 (1989)
    連結:
  36. [13] I. A. Buyanova, J. P. Bergman, G. Pozina, W. M. Chen, S. Rawal, D. P. Norton, S. J. Pearton, A. Osinsky, and J. W. Dong, Appl. Phys. Lett. 90, 261907 (2007)
    連結:
  37. [17] Y. Kishimoto, Y. Shiraki, and S. Fukatsu, Thin Solid Films 321, 81 (1998)
    連結:
  38. [2] J. H. Lim, C. K. Kang, K. K. Kim, I. K. Park, D. K. Hwang, and S. J. Park, Adv. Mater. 18, 2720 (2006)
  39. [4] X. T. Hao, L. W. Tan, K. S. Ong, and F. R. Zhu, J. Cryst. Growth 287, 44 (2006)
  40. [5] R. K. Shukla, A. Srivastava, A. Srivastava, K. C. Dubey, J. Cryst. Growth 294, 427 (2006)
  41. [8] R. Tena-Zaera, A. Katty, S. Bastide, C. Levy-Clement, Chem. Mater. 19, 1626 (2007)
  42. [9] C. Platzer-Bjorkman, I. Torndahl, A. Hultqvist, J. Kessler, M. Edoff, Thin Solid Films 515, 6024 (2007)
  43. [13] U. Ozgur, Ya. I. Alivov, C. Liu, M. A. Reshchikov, S. Dogan, V. Avrutin, S.-J. Cho, and H. Morkoc, J. Appl. Phys. 98, 041301 (2005)
  44. [14] A. Ashrafi, C. Jagadish, J. Appl. Phys. 102, 071101 (2007)
  45. [16] J.-M. Chauveau, P. Vennegues, M. Laugt, C. Deparis, J. Zuniga-Perez, and C. Morhain, J. Appl. Phys. 104, 073535 (2008)
  46. [18] G. D. Wilk, R. M. Wallace, and J. M. Anthony, J. Appl. Phys. 89, 5234 (2001)
  47. [19] M. Rinkio, A. Johansson, G. S. Paraoanu, and P. Torma, Nano Lett. 9, 643 (2009)
  48. [21] B. Min, J. S. Lee, J. W. Hwang, K. H. Keem, M. I. Kang, K. Cho, M. Y. Sung, S. Kim, M.-S. Lee, S. O. Park, and J. T. Moon, J. Crystal Growth 252, 565 (2003)
  49. [24] C.-W. Lin, D.-J. Ke, Y.-C. Chao, L. Chang, M.-H. Liang, and Y.-T. Ho, J. Crystal Growth 298, 472 (2007)
  50. [25] P.-Y. Lin, J.-R. Gong, P.-C. Li, T.-Y. Lin, D.-Y. Lyu, D.-Y. Lin, H.-J. Lin, T.-C. Li, K.-J. Chang, and W.-J. Lin, J. Crystal Growth 310, 3024 (2008)
  51. [26] W. WoJicik, M. Godlewski, E. Guziewicz, R. Minikayev, and W. Paszkowicz, J. Crystal Growth 310, 284 (2008)
  52. [27] J. W. Lee, J. H. Kim, S. K. Han, S. K. Hong, J. Y. Lee, S. I. Hong, T. Yao, J. Cryst. Growth 312, 238–244 (2010)
  53. [28] J. H. Kim, S. K. Han, S. I. Hong, S. K. Hong, J. W. Lee, J. Y. Lee, J. H. Song, J. S. Park, T. Yao, J. Vac. Sci. Technol. B 27, 1625–1630 (2009)
  54. [30] Y. Yan, G. M. Dalpian, M. M. Al-Jassim, S.-H. Wei, Phys. Rev. B. 70, 193206 (2004).
  55. [32] C. Platzer-Bjokman, T. Torndahl, A. Hultqvist, J. Kessler, and M. Edoff, Thin Solid Films 515, 6024 (2007)
  56. [33] K. Saito, Y. Hiratsuka, A. Omata, H. Makino, S. Kishimoto, T. Yamamoto, N. Horiuchi, and H. Hirayama, Superlattices and Microstructures 42, 172 (2007)
  57. [36] C. Lee, S. Y. Park, J. Lim, and H. W. Kim, Mater. Lett. 61, 2495 (2007)
  58. [37] S. J. Lim, S.-J. Kwon, H. Kim, and J.-S. Park, Appl. Phys. Lett. 91, 183517 (2007)
  59. Chapter2
  60. [1] U. Ozgur, Ya. I. Alivov, C. Liu, M. A. Reshchikov, S. Dogan, V. Avrutin, S.-J. Cho, and H. Morkoc, J. Appl. Phys. 98, 041301 (2005)
  61. [2] S. Yang, C. C. Kuo, W.-R. Liu, B. H. Lin, H.-C. Hsu, C.-H. Hsu, and W. F. Hsieh, Appl. Phys. Lett. 100, 101907 (2012)
  62. [3] J.-R. Chen, T.-C. Lu, Y.-C. Wu, S.-C. Lin, W.-F. Hsieh, S.-C. Wang, and H. Deng, Opt. Express 19, 4101 (2011)
  63. [4] Y. Yan, G. M. Dalpian, M. M. Al-Jassim, S.-H. Wei, Phys. Rev. B. 70, 193206 (2004).
  64. [6] Elza Bontempi's Science Page from http://dimgruppi.ing.unibs.it/ [7]http://inano.au.dk/research/competences-and-facilities/nanotools/transmission-and-scanning-electron-microscopy/
  65. [8] http://www.microscopy.ethz.ch/
  66. [9] http://www.tf.uni-kiel.de/matwis/amat/def_en/kap_5/backbone/r5_4_1.html
  67. [12] Gerthsen, D.; Litvinov, D.; Gruber, T.; Kirchner, C.; Waag, A., Appl. Phys. Lett. 2002, 81, 3972.
  68. [13] Vennegues, P.; Chauveau, J. M.; Korytov, M.; Deparis, C.; Zuniga-Perez, J.; Morhain, C., J. Appl. Phys. 2008, 103, 083525.
  69. [14] Wang, X. Q.; Iwaki, H.; Murakami, M.; Du, X. L.; Ishitani, Y.; Yoshikawa, A., Jpn. J. Appl. Phys. 2003, 42, L99.
  70. [15] Chen, Y. F.; Bagnall, D. M.; Koh, H. J.; Park, K. T.; Hiraga, K.; Zhu, Z. Q.; Yao, T., J. Appl. Phys. 1998, 84, 3912.
  71. [16] A. Ashrafi and C. Jagadish, J. Appl. Phys. 102, 071101 (2007)
  72. [17] B. Cull, Y. Shi, S. Kumar, r. Shih, and J. Mann, Phys. Rev. E 51, 526 (1995)
  73. Chapter4
  74. [1] Tsukazaki, A.; Ohtomo, A.; Onuma, T.; Ohtani, M.; Makino, T.; Sumiya, M.; Ohtani, K.; Chichibu, S. F.; Fuke, S.; Segawa, Y.; Ohno, H.; Koinuma, H.; Kawasaki, M., Nat. Mater. 2005, 4, 42.
  75. [2] Lim, J. H.; Kang, C. K.; Kim, K. K.; Park, I. K.; Hwang, D. K.; Park, S. J., Adv. Mater. 2006, 18, 2720.
  76. [4] Hao, X. T.; Tan, L. W.; Ong, K. S.; Zhu, F. R., J. Cryst. Growth 2006, 287, 44.
  77. [5] Shukla, R. K.; Srivastava, A.; Srivastava, A.; Dubey, K. C., J. Cryst. Growth 2006, 294, 427.
  78. [8] Tena-Zaera, R.; Katty, A.; Bastide, S.; Levy-Clement, C., Chem. Mater. 2007, 19, 1626.
  79. [9] Platzer-Bjorkman, C.; Torndahl, I.; Hultqvist, A.; Kessler, J.; Edoff, M., Thin Solid Films 2007, 515, 6024.
  80. [10] Zhang, B. P.; Wakatsuki, K.; Binh, N. T.; Usami, N.; Segawa, Y., Thin Solid Films 2004, 449, 12.
  81. [11] Ohkubo, I.; Matsumoto, Y.; Ohtomo, A.; Ohnishi, T.; Tsukazaki, A.; Lippmaa, M.; Koinuma, H.; Kawasaki, M., Appl. Surf. Sci. 2000, 159, 514.
  82. [12] Liu, W. R.; Hsieh, W. F.; Hsu, C. H.; Liang, K. S.; Chien, F. S. S., J. Appl. Crystallogr. 2007, 40, 924.
  83. [13] Liu, W. R.; Li, Y. H.; Hsieh, W. F.; Hsu, C. H., Lee, W. C.; Lee, Y. J.; Hong, M.; Kwo, J., Cryst. Growth Des. 2009, 9, 239.
  84. [14] Lin, C. W.; Ke, D. J.; Chao, Y. C.; Chang, L.; Liang, M. H.; Ho, Y. T., J. Cryst. Growth 2007, 298, 472.
  85. [15] Kowalik, I. A.; Guziewicz, E.; Kopalko, K.; Yatsunenko, S.; Wόjcik-Głodowska, A.; Godlewski, M.; Dłużewski, P.; Łusakowska, E.; Paszkowicz, W., J. Cryst. Growth 2009, 311, 1096.
  86. [16] Pung, S. Y.; Choy, K. L.; Hou, X.; Shan, C., Nanotechnol 2008, 19, 435609.
  87. [17] Lin, P. Y.; Gong, J. R.; Li, P. C.; Lin, T. Y.; Lyu, D. Y.; Lin, D. Y.; Lin H. J.; Li, T. C.; Chang, K. J.; Lin, W. J., J. Cryst. Growth 2008, 310, 3024.
  88. [19] Wojcik, A.; Godlewski, M.; Guziewicz, E.; Minikayev, R.; Paszkowicz, W., J. Cryst. Growth 2008, 310, 284.
  89. [20] Alessandri, I.; Zucca, M.; Ferroni, M.; Bontempi, E.; Depero, L. E., Cryst. Growth Des. 2009, 9, 1258.
  90. [21] King, D. M.; Li, J.; Liang, X.; Johnson, S. I.; Channel, M. M.; Weimer, A. W., Cryst. Growth Des. 2009, 9, 2828.
  91. [22] Puurunen, R. L., J. Appl. Phys. 2005, 97, 121301.
  92. [23] Duniop, L.; Kursumovic, A.; MacManus-Driscoll, J. L.; Appl. Phys. Lett. 2008, 93, 172111.
  93. [25] Wang, X. Q.; Iwaki, H.; Murakami, M.; Du, X. L.; Ishitani, Y.; Yoshikawa, A., Jpn. J. Appl. Phys. 2003, 42, L99.
  94. [26] Chen, Y. F.; Bagnall, D. M.; Koh, H. J.; Park, K. T.; Hiraga, K.; Zhu, Z. Q.; Yao, T., J. Appl. Phys. 1998, 84, 3912.
  95. [27] Ohkubo, I.; Ohtomo, A.; Ohnishi, T.; Mastumoto, Y.; Koinuma, H.; Kawasaki, M., Surf. Sci. 1999, 443, L1043.
  96. [28] Vispute, R. D.; Talyansky, V.; Trajanovic, Z.; Choopun, S.; Downes, M.; Sharma, R. P.; Venkatesan, T.; Woods, M. C.; Lareau, R. T.; Jones, K. A.; Iliadis, A. A., Appl. Phys. Lett. 1997, 70, 2735.
  97. [29] Vinnichenko, M.; Shevchenko, N.; Rogozin, A.; Grotzschel, R.; Mucklich, A.; Kolitsch, A.; Moller, W., J. Appl. Phys. 2007, 102, 113505.
  98. [30] Abouzaid, A.; Ruterana, P.; Liu, C.; Morkoc, H., Superlatt. Microstruct. 2007, 42, 110.
  99. [31] D. Kohla, M. H., and G. Heilanda, Surf. Sci. 1973, 41, 403.
  100. [32] Hass, K. C.; Schneider, W. F.; Curioni, A.; Andreoni, W., Science 1998, 282, 882.
  101. [34] Gerthsen, D.; Litvinov, D.; Gruber, T.; Kirchner, C.; Waag, A., Appl. Phys. Lett. 2002, 81, 3972.
  102. [35] Vennegues, P.; Chauveau, J. M.; Korytov, M.; Deparis, C.; Zuniga-Perez, J.; Morhain, C., J. Appl. Phys. 2008, 103, 083525.
  103. [36] Kawasaki, M.; Ohtomo, A.; Ohkubo, I.; Koinuma, H.; Tang, Z. K.; Yu, P.; Wong, G. K. L.; Zhang, B. P.; Segawa, Y., Mater. Sci. Eng. B 1998, 56, 239.
  104. [37] M. Schirra, R. Schneider, A. Reiser, G. M. Prinz, M. Feneberg, J. Biskupek, U. Kaiser, C. E. Krill, K. Thonke, R. Sauer, Phys. Rev. B. 77, 125215 (2008).
  105. [38] T. Koida, S. F. Chichibu, A. Uedono, A. Tsukazaki, M. Kawasaki, T. Sota, Y. Segawa, H. Koinuma, Appl. Phys. Lett. 82, 532 (2003).
  106. [39] V. A. Fonoberov, K. A. Alim, A. A. Balandin, F. Xiu, J. Liu, Phys. Rev. B. 73, 165317 (2006).
  107. [40] D. W. Hamby, D. A. Lucca, M. J. Klopfstein, G. Cantwell, J. Appl. Phys. 93, 3214 (2003).
  108. [41] D. C. Look, D. C. Reynolds, J. R. Sizelove, R. L. Jones, C. W. Litton, G. Cantwell, W. C. Harsch, Solid State Commun. 105, 399 (1998).
  109. [42] Y. R. Ryu, T. S. Lee, H. W. White, Appl. Phys. Lett. 83, 87 (2003).
  110. [43] D. C. Look, D. C. Reynolds, C. W. Litton, R. L. Jones, D. B. Eason, G. Cantwell, Appl. Phys. Lett. 81, 1830 (2002).
  111. [44] F. X. Xiu, Z. Yang, L. J. Mandalapu, D. T. Zhao, J. L. Liu, Appl. Phys. Lett. 87, 252102 (2005).
  112. [45] F. X. Xiu, Z. Yang, L. J. Mandalapu, J. L. Liu, Appl. Phys. Lett. 88, 152116 (2006).
  113. [46] Y. W. Zhang, X. M. Li, W. D. Yu, C. Yang, X. Cao, X. D. Gao, J. F. Kong, W. Z. Shen, J. L. Zhao, X. W. Sun, J. Phys. D: Appl. Phys. 42, 075410 (2009).
  114. [47] D. Stichtenoth, J. Durr, C. Ronning, L. Wischmeier, T. Voss, J. Appl. Phys. 103, 083513 (2008).
  115. [49] Y. Yan, G. M. Dalpian, M. M. Al-Jassim, S.-H. Wei, Phys. Rev. B. 70, 193206 (2004).
  116. [51] W. Rieger, R. Dimitrov, D. Brunner, E. Rohrer, O. Ambacher, M. Stutzmann, Phys. Rev. B. 54, 17596 (1996).
  117. [52] P. Corfdir, P. Lefebvre, J. Levrat, A. Dussaigne, J.-D. Ganiere, D. Martin, J. Ristić, T. Zhu, N. Grandjean, B. Deveaud-Pledran, J. Appl. Phys. 105, 043102 (2009).
  118. [53] Y. J. Sun, O. Brandt, U. Jahn, T. Y. Liu, A. Trampert, S. Cronenberg, S. Dhar, K. H. Ploog, J. Appl. Phys. 92, 5714 (2002).
  119. [54] P. P. Paskov, R. Schifano, B. Monemar, T. Paskova, S. Figge, D. Hommel, J. Appl. Phys. 98, 093519 (2005).
  120. [55] Q. Li, S. J. Xu, W. C. Cheng, M. H. Xie, S. Y. Tong, C. M. Che, H. Yang, Appl. Phys. Lett. 79, 1810 (2001).
  121. [56] S. J. Chung, M. Senthil Kumar, H. J. Lee, E.-K. Suh, J. Appl. Phys. 95, 3565 (2004).
  122. [57] L. Grenouillet, C. Bru-Chevallier, G. Guillot, P. Gilet, P. Duvaut, C. Vannuffel, A. Million, A. Chenevas-Paule, Appl. Phys. Lett. 76, 2241 (2000).
  123. [59] Y. Chen, D. M. Bagnall, H.-J. Koh, K.-T. Park, K. Hiraga, Z. Zhu, and T. Yao, J. Appl. Phys. 84, 3912 (1998)
  124. [60] C.-W. Lin, D.-J. Ke, Y.-C. Chao, L. Chang, M.-H. Liang, and Y.-T. Ho, J. Cryst. Growth 298, 472 (2007)
  125. Chapter5
  126. [1] Lim, J. H.; Kang, C. K.; Kim, K. K.; Park, I. K.; Hwang, D. K.; Park, S. J., Adv. Mater. 2006, 18, 2720-2724.
  127. [3] Lee, J. W.; Kim, J. H.; Han, S. K.; Hong, S. K.; Lee, J. Y.; Hong, S. I.; Yao, T., J. Cryst. Growth 2010, 312, 238–244.
  128. [4] Cagin, E.; Yang, J.; Wang, W.; Phillips, J. D.; Hong, S. K.; Lee, J. W.; Lee, J. Y., Appl. Phys. Lett. 2008, 92, 233505.
  129. [5] Chauveau, J. M.; Vennegues, P.; Lauegt, M.; Deparis, C.; Zuniga-Perez, J.; Morhain, C., J. Appl. Phys. 2008, 104, 073535.
  130. [6] Kim, J. H.; Han, S. K.; Hong, S. I.; Hong, S. K.; Lee, J. W.; Lee, J. Y.; Song, J. H.; Park, J. S.; Yao, T., J. Vac. Sci. Technol. B 2009, 27, 1625–1630.
  131. [8] Chou, M. M. C.; Chang, L.; Chung, H. Y.; Huang, T. H.; Wu, J. J.; Chen, C. W., J. Cryst. Growth 2007, 308, 412–416.
  132. [11] Hiroaki Matsui; Hitoshi Tabata, J. Appl. Phys. 2006, 99, 124307.
  133. [12] Ku, C. S.; Lee, H. Y.; Huang, J. M.; Lin, C. M., Cryst. Growth Des. 2010, 10, 1460–1463.
  134. [13] Liu, W.-R.; Hsieh, W. F.; Hsu, C.-H.; Liang, S. K.; Chien, F. S.-S., J. Appl. Cryst. 2007, 40, 924
  135. [14] Narayan, J.; Larson, B. C., J. Appl. Phys. 2003, 93, 278
  136. [15] Zuniga-Perez, J.; Munoz-Sanjose, V.; Palacios-Lidon, E.; Colchero, J., Appl. Phys. Lett. 2006, 88, 261912.
  137. [16] Yang, S.; Lin, B. H.; Liu, W. R.; Lin, J. H.; Chang, C. S.; Hsu, C. H.; Hsieh, W. F., Cryst. Growth Des. 2009, 9, 5184–5189.
  138. [17] Hamby, D. W.; Lucca, D. A.; Klopfstein, M. J.; Cantwell, G., J. Appl. Phys. 2003, 93, 3214.
  139. [18] Schirra, M.; Schneider, R. ; Reiser, A. ; Prinz, G. M. ; Feneberg, M. ;Biskupek, J. ; Kaiser, U. ; Krill, C. E. ; Thonke, K. ; Sauer, R., Phys. Rev. B 2008, 77, 125215.
  140. [20] Yang, S.; Kuo, C. C.; Liu, W.-R.; Lin, B. H.; Hsu, H. C.; Hsu, C.-H.; Hsieh, W. F., Appl. Phys. Lett. 2012, 100, 101907.
  141. [21] Chichibu, S. F.; Onuma, T.; Kubota, M.; Uedono, A., J. Appl. Phys. 2006, 99, 093505.
  142. [22] Puurunen, R. L., J. Appl. Phys. 2005, 97, 121301.
  143. Chapter6
  144. [1] Y. Yan, G. M. Dalpian, M. M. Al-Jassim, S.-H. Wei, Phys. Rev. B. 70, 193206 (2004).
  145. [2] S. Yang, C. C. Kuo, W.-R. Liu, B. H. Lin, H.-C. Hsu, C. H. Hsu, and W. F. Hsieh, Appl. Phys. Lett. 100, 101907 (2012)
  146. [3]W. Rieger, R. Dimitrov, D. Brunner, E. Rohrer, O. Ambacher, M. Stutzmann, Phys. Rev. B. 54, 17596 (1996)
  147. [4] P. Corfdir, P. Lefebvre, J. Levrat, A. Dussaigne, J.-D. Ganiere, D Martin, J. Ristic, T. Zhu, N. Grandjean, and B. Deveaud-Pledran, J. Appl. Phys. 105, 043102 (2009)
  148. [5] Y. J. Sun, O. Brandt, U. Jahn, T. Y. Liu, A. Trampert, S. Cronenberg, S. Dhar, K. H. Ploog, J. Appl. Phys. 92, 5714 (2002).
  149. [6] P. P. Paskov, R. Schifano, B. Monemar, T. Paskova, S. Figge, D. Hommel, J. Appl. Phys. 98, 093519 (2005).
  150. [7] T. Schmidt, K. Lischka, and W. Zulehner, Phys. Rev. B. 45, 8989 (1992)
  151. [8] V. A. Fonoberov, K. A. Alim, A. A. Balandin, F. Xiu, J. Liu, Phys. Rev. B. 73, 165317 (2006)
  152. [9] D. W. Hamby, D. A. Lucca, M. J. Klopfstein, G. Cantwell, J. Appl. Phys. 93, 3214 (2003)
  153. [10] D. C. Look, D. C. Reynolds, J. R. Sizelove, R. L. Jones, C. W. Litton, G. Cantwell, W. C. Harsch, Solid State Commun. 105, 399 (1998)
  154. [11] Y. H. Cho, G. H. Gainer, A. J. Fischer, J. J. Song, S. Keller, U. K. Mishra, and S. P. DenBaars, Appl. Phys. Lett. 73, 1370(1998)
  155. [14] Y. Narukawa, Y. Kawakami, S. Fujita, and S. Fujita, Phys. Rev. B 55, R1938 (1997)
  156. [15] P. Corfider, P. Lefebvre, J. Ristić, J.-D. Ganiere, and B. Deveaud-Pledran, Phys. Rev. B. 80, 153309 (2009)
  157. [16] S. Khromov, C. G. Hemmingsson, H. Amano, B. Monemar, L. Hultman, and G. Pozina, Phys. Rev. B. 84, 075324 (2011)
  158. [18] Paul Harrison, Quantum Wells, Wires and Dots: Theoretical and Computational Physics, New York : John Wiley & Sons (2000)
  159. [19] J. Y. Jen, J. R. Anderson, M. Gorska, J. Appl. Phys. 102, 053518 (2007)